
Marc Hamilton

Director of Technology

Global Education and Research

Sun Microsystems, Inc

University of Tokyo Java Class

September 22-26, 2003

J2EE Overview and Roadmap

Overall Presentation Goal

Learn how to build enterprise applications

with Java� 2 Platform, Enterprise Edition
(J2EE) Technology building Enterprise

JavaBeans� (EJB) using Java Studio

Java 2 Platform

J av a 2

Ent er pr i s

e

J av a 2

St andar d

Edi t i on
J av a 2 M i cr o Edi t i on

J av a Plat for m

K VM Car d VMCl assi c VMHot Spot

M emor y :

Oper at i ng Syst em:

10MB

64-bit

1MB 500kB

30-bit

10kB

16-bit 8-bit

J2EE� Platform

� The J2EE platform brings the benefits of
component-based development to enterprise
applications

� Components are:
Simpler to develop

Portable

Reusable

The J2EE Platform Architecture

B2B

Applications

B2C

Applications

Web
Ser v i ce

Wireless

Applications
Application Server

Enterprise

Information

Systems

Existing

Applications

J
N

D
I

J2SE

J
M

S

R
M

I/
II

O
P

J
D

B
C

Database

App
Client

App Client

Container

HTTP/
HTTPS

J2SE

RMI

J2SE

J
N

D
I

J
M

S

R
M

I/
II

O
P

J
D

B
C

J
T

A

JavaMail

JAF J
N

D
I

J
M

S

R
M

I/
II

O
P

J
D

B
C

J
T

A

JavaMail

JAF

HTTP/
HTTPS

Applet Container

Applet JSP Servlet EJB

Web Container EJB Container

RMI

J2SE

The J2EE Platform
Containers and Components

J2EE Components

� Server-side component technologies
Enterprise JavaBeans� (EJB)

Java� Servlet API and JavaServer Pages�

� Client-side components
Application client

� Configured via deployment descriptors
� Deployed into containers

J2EE Components

Container Responsibility

Cont ai ne

Tr ansact i o Secur i t

St at e

M anagemen
Per si st ence L i fe Cycle

 Remot e

I n t er fac

EJEJEJ

Advantages of Container

� Advantages of letting the container take care of
security, persistence, and transactions:

Less programming, easier

Security, transactions: configurable when
assembling application components

Transactions, persistence: container can give better
performance

Enterprise JavaBeans (EJBs)

Overview

What Is EJB� Technology?

� Enterprise JavaBeans (EJB) is the cornerstone of
J2EE

� A standard-based, server-side component
technology for building distributed, object-
oriented applications

� Easy development and deployment of Java
technology-based application that are:

Transactional, distributed, multi-tier, portable,
scalable, secure, �

Why EJB� Technology?

� Leverages the benefits of component-model on
the server side

� Separates business logic from system code
� Provides framework for portable components

Over different J2EE-compliant servers

Over different operational environments
� Enables deployment-time configuration

Deployment descriptor

EJB� Architecture

J av a Cl asses t o dev el op:

Tw o i n t er faces and One i mpl ement at i on

Remote interface stubs

home

object

context

bean

Ser v er
provides resource mgmt

Cont ai ne

met hod

s

Deployment

Descriptor

Automatically invokes services based on

requirements defined in deployment descriptor

Create

lookup

remove

cr eat e

l ook up

r emov e

Business

methods

client

EJB Packaging

EJ B

home

EJ B

object

Depl oyment t ool s

ejb
Depl oyment

descr i pt or

EJ B

hom

eEJ B

object

ejb

Depl oyment

descr i pt or

Web jars (.war):

servlets, JSP�

Application Jar (.ear):

ejb-jar, Web-jar, DD

ejb-jar (.jar)

EAR Packaging

EJBHome EJBObject

Beans, DD

Depl oyment t ool s

Depl oyment

descr i pt or

Deployment Tools

� GUI-based Tools

� Packaging, assembly and Deployment of
applications for the J2EE platform

� Wizard for creation of J2EE platform-based
modules

� Simplify deployment descriptor generation

� Application update functionality

Types of EJBs

� Entity Bean
For Persistent Data Management

BMP: Bean Managed Persistence

CMP: Container Managed Persistence
� Session Bean

Statefull: Maintains the client session

Stateless: Fast and less overhead
� Message Driven Bean

Asynchronous communication with EJBs

Entity Bean

� Model business concepts, often called domain classes

Abstractions of real-world entities that can be expressed as
nouns (i.e., Customer inventory item)

� Object view of business entity stored in persistent storage

In memory view and manipulation of data
� Entity beans support shared access from

multiple users
� Entity beans can be re-instantiated from attributes stored in

database:

�Lives� as long as the data in the database

Entity Bean Types

� Bean-Managed Persistence

Advantages:

• Developer has full control

Disadvantages:

• More complex coding

• May be less portable

� Container-Managed Persistence

Advantages:

• Vendor does the work, better caching, performance

• Changes are implemented in deployment descriptors

• Generated at deploy time, more portability

Two Types of Session Beans

� Stateless
An object that represents a stateless service

Provides responses to requests without storing
client specific information

Transient

Temporary piece of business logic needed
by a specific client for a limited time span

� Stateful
Maintains client specific state

stateless St at e i nst ance

EJB API

<<Interface>>

EJBObject

<<Interface>>

Greeter

XxxGreeter

EJBObject

<<Interface>>

java.RMI.Remote

<<Interface>>

EJBHome

<<Interface>>

GreeterHome

xxxGreeter

EJBHome

JDK

javax.ejb

Bean

provider

xxx

Container

provider

<<Interface>>

java.io.serializable

<<Interface>>

EnterpriseBean

<<Interface>>

SessionBean

GreeterBean

xxx

GreeterBeanImpl

Greeter EJB Example

� Remote Interface code:

� Home Interface code:

01 package ejb;
02 import javax.ejb.*;
03 public interface Greeter extends javax.ejb.EJBObject {
04 public java.lang.String getGreeting() throws
05 java.rmi.RemoteException;
}

01 public interface GreeterHome extends javax.ejb.EJBHome {
02 public ejb.Greeter create()

 throws javax.ejb.CreateException, java.rmi.RemoteException;

03 }

Greeter EJB Implementation

<<Interface>>
SessionBean

setEntityContext()
unsetEntityContext

ejbRemove()
ejbActivate()

ejbPassivate()
GreeterBean

getGreeting()

ejbCreate()
ejbPostCreate()

setEntityContext()
unsetEntityContext

ejbRemove()
ejbActivate()

ejbPassivate()

I mpl ement

<<Interface>>
Greeter

getGreeting()

<<Interface>>
GreeterHome

create()

Must match
for container
�glue�

Deployment Descriptor

1<?xml version="1.0" encoding="UTF-8"?>

2<ejb- jar>

3 <enterprise-beans>

4 <session>

5 <display-name>Greeter</ display-name>

6 <ejb-name>Greeter</ ejb-name>

7 <home>ejb.GreeterHome</ home>

8 <remote>ejb.Greeter</ remote>

9 <local-home>ejb.LocalGreeterHome</ local-home>

10 <local>ejb.LocalGreeter</ local>

11 <ejb-class>ejb.GreeterBean</ ejb-class>

12 <session- type>Stateless</ session- type>

13 <transaction- type>Bean</ transaction- type>

14 </ session>

15 </ enterprise-beans>

16</ ejb- jar>

EJB Transactions

� EJB transactions in two ways:
Container-managed transactions: Depend
on the declarative transactions specified in
deployment descriptor

• The EJB container controls the integrity of
your transactions

Bean-managed transactions: Use the user
transaction API (JTA) to explicitly drive transactions

Container Managed Transaction

TX_REQUI RES_N EW TX_REQUI RED

TX_REQUI RED

TC TCCr ui se

M anager

Cr ui seEJ B

Passenger EJ

Reser v e

N ew
Tr ansact i on

Cont ex t

Tr ansact i on Cont ex t

Pr opagat ed

Tr ansact i on

A t t r i but es

2. Cr eat e Reser v at i on

TRAN SACTI ON

TC

1. Updat e

 number
seat s

Declarative Transaction Management

� The following transaction attributes can be
specified in the deployment descriptor to
declare what type of transaction support
the bean or bean method requires:

TX_NOT_SUPPORTED

TX_SUPPORTS

TX_REQUIRED

TX_REQUIRES_NEW

TX_BEAN_MANAGED

TX_MANDATORY

J2EE Security

� Declarative and programmatic security
� Realm administration

LDAP, certificate, database, file,
Solaris-based realms

� Pluggable authentication via JAAS
You can add custom realm

� Single sign-on (value-add)
Same authenticate state shared among multiple
J2EE applications

Authentication Framework of J2EE

HTTP

Client

EIS

EJB

Container

EJ

B

Ser v l et / J S

P

Web

Container

Initiator

Authorization

Authentication

Authorization

EJ

B

EJ

B

Web-Tier Authentication

� Authentication Mechanisms by which browser supplies
user identity information (logging-in)
to web container

HTTP basic authentication (with or without SSL)

Form-based authentication (with or without SSL)

Certificate authentication
� Web container then performs actual authentication

By checking it against �backend user identity
information� (Realms)

• Database, LDAP server, Flat-file, etc.

Form-Based Login in Detail

1. Request made by client

2. Is client authenticated?

3. Unauthenticated client

 redirected
4. Login form returned to client

5. Client submits login form

6. Aut hent i cat i on Login succeeded,

 redirected to resource7. Aut hor i zat i on Permission tested,

 result returned
8. Login failed, redirect to error page

9. Error page returned to client

1

2
Pr ot ect ed
Resour ce

Login .jsp j_secur i t y_check Er r or .ht

Request
Response

Page
Login
For m

Er r or
Page

3
6 8

7 4 5 9

Dev el opment and Depl oyment

of EJ Bs Usi ng J av a St udi o

J2EE Application Development

� Design and develop components
Create Java source

Create deployment descriptor
� Assemble components into application

Create deployment descriptor

EJB modules are packaged as JAR files

Web modules are packaged as JAR files with a .war
(Web ARchive) extension

� Deploy the enterprise applications
Deployment time configurations

� Full Featured Development Environment for
J2EE application development

� Control deployment of enterprise application

to: Sun� ONE Application Server, BEA, RI
� Flexibility: Core (foundation) and plug-in

modules
� Advanced Source Code Editor
� Auto-complete, color coding, Source Code

Control etc.

Java Studio 5, Enterprise Edition

 Java Studio Application Server
Features Extension

 - Browse database tables
 CMP mapping - Select related tables

 - Automatically generates CMP
 - Easily register both local and
 remote application servers

 Server runtime - Start and stop application server
 Control instances

 - Register J2EE resources in any
 of the registered app server

 Resource
 Configuration pools

 - JMS resources

 - Register resources and connection

Java Studio 5 and
Application Server 7.0

Java Studio 5 and
Application Server 7.0

 Java Studio Features Application Server Extension
 - Select from the list of registered applica-

 Application deployment tion servers and leverage the dynamic
 (�hot�) deployment and redeployment
 features supported in S1AS
 - Debugging against deployed apps
 on both local and remote application

 Debugging and log server instances
 viewing - View the server event log files from

 within the Studio

J 2EE Roadmap

J2EE 1.4 Content

� JAX-RPC 1.1 (JSR-101)
� SAAJ 1.1
� Web Services (JSR-109)
� Management (JSR-77)
� Deployment (JSR-88)
� Connectors 1.5
� JMX 1.1
� JMS 1.1
� JTA 1.0

� Servlet 2.4
� JSP 2.0
� EJB 2.1
� JAXR 1.0 (JSR-93)
� JACC (JSR-115)
� JAXP 1.2
� JavaMail 1.3
� JAF 1.0

J2EE Ease-of-Development (1)

� JSPTM 2.0

Simple Expression Language (EL)

Simple Tag Extensions and Handlers

Tag Files

DD and TLD using XML Schema

JSP Fragments and JSP Configuration

� JSTLTM 1.0

Supports Expression Language

J2EE Ease-of-Development (2)

� Simple Expression Language (EL)

Scripting Programming Model

Recognized by Container in Template Text and Attributes

EL Functions, extensible through Taglibs
EL Example:

Before (in JSP 1.2):

 <% Map m = (Map) pageCont ext . get (“ myMap”) ;

 FooBean f = ((FooBean) m. get (" key")) ;

 i f (f ! = nul l) { %><%= f . get Bar () %><%} %>

After (in JSP 2.0):

 ${ myMap[" key"] . bar }

J2EE Web Services

� JAX-RPC 1.1

Implements WS- I Basic Profile 1.0

SOAP and WSDL based interoperability

Implements WSDL to Java mapping

Servlet based endpoint

Stateless session bean endpoint

� JAXR 1.0

Implements UDDI Registry protocol

� JSR 109 (Web Services for J2EE)

JAX-RPC Architecture

WSDL Java

WSDL Document

HTTP

Client-side JAX-RPC

Runtime System

SOAP

Container

Java WSDL

Generated Code

JAX-RPC

Client

HTTP

Server-side JAX-RPC

Runtime System

SOAP

Container

JAX-RPC

Service

Endpoint

Web Standards Drive

Service Oriented Architectures

� SOA for People

Browser - Web Server Model

HTML for Content and Presentation

HTTP for Access

� SOA for Applications

XML for Content

WSDL-Soap-HTTP for Access

J2EE Web Application

HTML

&

HTTP

Servlet/JSP

EJB

JDBC JMS

Connectors

JTA

Web Interoperability

Contract

J2EE Portability

Contract

J2EE 1.4 Web Service

XML

&

WSDL

Servlet/EJB

Endpoints

EJB

JDBC JMS

Connectors

JTA

Web Interoperability

Contract

J2EE Portability

Contract

XML Message Exchange Patterns

� Evolution

XML over HTTP

XML Protocol for Carrying XML Content (SOAP)

XML SOA Description (WSDL)

� Interoperability

Early Adhoc Efforts

WS- I Basic Profile 1.0

JAX-RPC - JAXB - JAXP
Core Web Service APIs

JAX-RPC - The JavaTM WSDL MEP API

JAXB - The JavaTM XML Binding API

JAXP - The JavaTM XML Parsing API

Basic But Powerful

� No message level security

� Only as reliable as HTTP

� No formal conversations

� But ...

� MEPs for XML exchange

Powerful model

Universal connectivity

Don�t under estimate the network effect

J2EE Integration

� Connectors 1.5

Synchronous & asynchronous integration with EIS

Bi-directional resource adapter

JMS pluggability

MDB invocation

� JMS 1.1

� Web Services vs. Connectors & JMS

Loosely-coupled systems (Web Services)

Tightly-coupled systems (Connectors and JMS)

J2EE Management, Deployment and
Authorization

� J2EE Management 1.0

Defines information model, attributes, events, statistics, and state management

Defines a management EJB - MEJB

Supports standard management protocols (SNMP, WBEM, CIM, etc.)

Uses JMX

� J2EE Deployment 1.1

Standard Tools interface; simplifies deployment

� JavaTM Authorization Contract for Containers (JACC)

J2EE Scalable Business Logic

� EJB 2.1

Web Service Endpoints

Message Driven Bean generalization

Corresponding support in Connectors 1.5

EJB QL Enhancements

Timer Service

� EJB 2.x has fixed EJB 1.0 problems

Give it a try

Ease-of-Development in J2EE

� Main thrust for J2EE Platform going forward:
Ease-of-Development

� J2EE Platform is designed to serve the needs of
every developer:

Enterprise Developer

Corporate (Workgroup) Developer

Content (Web) Developer
� J2EE is becoming a ubiquitous platform for

every type of application
Not just the Enterprise

Example: EJB Creation

Currently, to create an EJB:

Cont ext i ni t i al = new I ni t i al Cont ext () ;

Obj ect obj r ef =
i ni t i al . l ookup(j ava: comp/ env/ ej b/ Si mpl eFoo”) ;

FooHome home = (FooHome)

Por t abl eRemot eObj ect . nar r ow(obj r ef , FooHome. cl ass) ;

Foo myFoo = home. cr eat e() ;

Wouldn't I t be Nice, instead:

 pr i vat e @cr eat e Foo myFoo;

What is the Ease-of-Development?

Ease-of-Development

Content Developer Corporate Developer Enterpr ise Developer

Tools: RAVE, othersWeb Dev Tools:
Macromedia, etc...

Tools: IDEs, emacs

 J2EE Metadata JSTL-JSP

 “ Easy-to-Develop-On” J2EE Platform

� Tools are important, but...
� Code should be easy to write, understand and maintain as well

Metadata in JavaTM Language

� Metadata facility for the JavaTM programming
language (JSR 175)

� Allows to define custom attributes
� Allows to annotate fields, methods and classes

with attribute-value pairs
� Do not affect the semantics of a program

Stored by the compiler

Development and deployment tools can read and
process the annotated program elements

JAX-RPC 2.0

� Proposed extension to JAX-RPC (JSR 224)
� Major focus on Ease-of-Development

To simplify the most common development scenarios for
Web Services clients and servers.

Build on J2SE Metadata facility (JSR 175)

Align with JSR 181 (Metadata in WS)
� WSDL to JavaTM binding migrates to JAXB 2.0
� Improvements in handler processing framework

Choice of handler models

Improve the declarative model for handlers

EJB 3.0

� Proposed extension to EJB (JSR 224)
� Focus on Ease-of-Development

Define metadata attributes to annotate EJBs

Target to simplify/eliminate EJB deployment
descriptors for developers

Automatic generation of component and home
interfaces

Programmatic defaults for the common, expected
behaviors of EJB container

Introduce simplified EJB component that more
closely resembles a plain Java class.

Other improvements

JAXB 2.0

� Proposed extension to JAXB (JSR 222)
� Full W3C XML Schema support
� Will implement WSDL to JavaTM databinding for

JAX-RPC 2.0
� Bi-directional XML Schema to JavaTM mapping

JavaTM to XML Schema mapping will be added
� Ease-of-Development feature

Use of annotations and metadata in bindings

JDBC 4.0

� Proposed extension to JDBC (JSR 221)
� Focus on Ease-of-Development

Management of JDBC Drivers
• provide utility classes to improve the JDBC driver

registration and unload mechanisms

Standard set of tags to manipulate and manage
active connections

• Using metadata and annotations

Align various persistence and update mechanisms

Support of JDBC RowSet data model

PHP Scripting and J2EE

� Will enable the development of portable Java
classes that can be invoked from a page written
in an scripting language (JSR 223)

including details on security, resources and class
loader contexts

� Will work with PHP, ECMAScript, others...
� Ease-of-Development features in a Servlet

container
Packaging scripting pages and JavaTM classes, into a
single WAR file

Summary

� J2EE 1.4 fully implements Web Services
protocols

� J2EE 1.4 fully supports WS-I
� J2EE introduces more Ease-of-Development and

Web Services Features

If You Only Remember
One Thing�

J2EE Compatibility is the Key!

Summary

� J2EE is a proven platform for building flexible,
scalable, reliable, maintainable enterprise
applications

� Java Studio is a great tool for developing J2EE
Solutions

� Sun's Applications Server is a 1st-class
platform for developing and deploying
scalable, robust and secure Enterprise
Services

� Java� 2 Platform, Enterprise Edition Developer
Portal: java.sun.com/j2ee

� Download the Java Studio and Sun
Application Server:
http://www.sun.com/edu/edusoft/

Development Resources

References

� Enterprise JavaBeans specification JSR-153
 http:/ / jcp.org/ jsr/ detail/ 153.jsp

� Java 2 Platform, Standard Edition Specification
 http:/ / java.sun.com/ j2se/ 1.4/ docs/ api/ index.html

� Implementing Enterprise Web Services JSR-109
 http:/ / jcp.org/ jsr/ detail/ 109.jsp

� Java APIs for XML based RPC JSR-101
 http:/ / jcp.org/ jsr/ detail/ 101.jsp

� Web services support for J2EE
JSR-109 (Web Services)

JSR-101 (JAX-RPC)

JSR-93 (JAXR)
� The following provide new capabilities to 1.4:

JSR-77 (Management)

JSR-88 (Deployment API)

JSR-115 (J2EE Authorization SPI)

JSR-56 (JNLP)

J2EE-Related JSRs

� The following JSRs enhance APIs:
JSR-112 (J2EE Connector Architecture 2.0)

JSR-152 (JSP 1.3)

JSR-154 (Servlet 2.4)

JSR-153 (EJB 2.1)

JSR-9XX (JAXP 1.2�XML Schema support)

JSR-9XX (JMS 1.1�Queue/topic unification)
� J2EE Client Provisioning (JSR 124)
� The J2EE Connector Architecture (JSR 016)

J2EE-Related JSRs (Cont.)

Marc Hamilton

marc.hamilton@sun.com

Sun Microsystems, Inc.

