
High Performance Computing on Grid

Kenjiro Taura
Toshio Endo, Kenji Kaneda

University of Tokyo



Long fat pipes are now real

SC2003 Bandwidth Challenge



Implication

WAN bandwidth limitations will be gone
Today’s common conception must become 
misconception
• Grid only for brute-force, task-farming APPs
• Traditional HPCs only on clusters



Analyzing LU scalability

“Bisection BW” vs “Number of procs
comfortably supported” (1 min. jobs)

0

50

100

150

200

250

0 500 1000 1500 2000 2500

Bisection BW (Mbps)

N
um

be
r o

f P
ro

ce
ss

or
s



Our question

Are “fat pipes” all that’s required to make 
“HPC on Grid” real?
If not, what else are required?



What’s in today’s Grid?

Data sharing
Small scale coordination across clusters
Brute-force & compute-mostly tasks



What’s not in today’s Grid?

Sense of “an alternative to a cluster for HPC”
• “my fluid dynamic code would be too slow”

Sense of “resources pooled and shared on 
demand”
• “cluster X is a bit occupied, so I’ll rather wait 

until tomorrow…”



Opportunities with fat pipes

Communication-intensive apps
Dynamically/automatically chosen resources
Migration of app states to reconfigure 
resources at runtime

They all contribute to make Grid close to 
what it ought to be



Are fat pipes all that’s required?

Obviously no
We need a range of research to make the 
above story real
Key issue
• make communication-intensive HPC apps 

flexible, adaptable, and latency-tolerant



Our research theme and approach

Phoenix 
Programming 

Model

Applications
LU, SAT, …

Implementation
resource discovery, 

routing



Phoenix programming model 

Baesd on general message passing model
Unlike usual message passing models, 
however, it is designed on the assumption 
that nodes are selected, added, or deleted at 
runtime (by user, scheduler, etc.)



Phoenix key features

Transparent migration of app state
Transparent communication over WAN (with 
firewalls, NAT, DHCP, etc.)



Why important?

It allows participating nodes
1. to change over time, to adapt to dynamic 

conditions (host load, network traffic, etc.)
2. to be flexibly selected by external agents 

(resource scheduler, broker, etc.)
3. to be dead in the beginning
4. to crash at runtime (with suitable provision in 

app logic)



To summarize,

Phoenix+fat pipes

HPC with dynamic resources.
adaptive, fault tolerant, etc.=

= Grid as a real pool of resources



Our experience in LU 
factorization

Endo et al. [CCGrid 2004]
Asynchronous LU factorization written in 
Phoenix
• runs over multiple LANs
• tolerates background loads and long latencies
• allows nodes to be added at runtime



Phoenix Demo

Kashiwa
Appro dual Xeon 2.4GHz
64 nodes

Hongo
IBM BladeCenter
dual Xeon 2.4GHz
70 nodes

Phoenix system 
visualization

LU FactorizationLU Factorization

LU algorithm animationLU algorithm animation



LU Factorization Basics

for (k=0; k<N; k++) {
for (j=k; j<N; j++) Akj = Akj / Akk;
for (i=k+1; i<N; i++)

for (j=k+1; j<N; j++) 
Aij -= Aik Akj;

}
k

k

update

j

i



Asynchronous LU Factorization

Computation on a block fires as soon as 
necessary data arrives
multiple k iterations overlap
• latency tolerant
• background load resilient



Performance when exclusively 
occupying the cluster

LU Scalability (Static)

0
20
40
60
80

100
120
140

0 20 40 60 80 100 120 140

number of processes

pe
rf

or
m

an
ce

 (G
Fl

op
s)

Async-Rec Sync-Rec HPL



A reference data

From 21st Top 500 (Xeon 2.6GHz 150CPU, 
GigE)
• N=126,000 ⇒ 365Gflops
• N=50,000 ⇒ 182.5Gflops

Comparison to HPL (High Performance 
Linpack; MPI)
• N = 25,000, 64 processes
• HPL ⇒ 110Gflops
• Phoenix ⇒ 108Gflops



with background load
LU with load

0

20

40

60

80

100

120

no load 4 8 16

number of loaded nodes

pe
rf

or
m

an
ce

 (G
Fl

op
s)

HPL Sync-Rec Aync-Rec



with large latencies
LU under latency (64 procs)

0

20

40

60

80

100

120

0 100 200 500

Latency (ms)

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

Async Sync



Adding processes dynamically
LU with dynamic resources

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700

time (sec)

pe
rf

or
m

an
ce

 (G
Fl

op
s)

Static-64 Dynamic (w/ DLB) Dynamic (w/o DLB) Fixed-16



Conclusion

everything on the Gridstay in “master-worker”
models on the Grid

make you HPC apps flexiblestick to single clusters 
for HPCs

new models, both traditional 
and new apps

stick to MPI + NPB

seriously investigate 
performance under various 
loads

exclusively focus on 
peak performance

Right directionsWrong directions


	High Performance Computing on Grid
	Long fat pipes are now real
	Implication
	Analyzing LU scalability
	Our question
	What’s in today’s Grid?
	What’s not in today’s Grid?
	Opportunities with fat pipes
	Are fat pipes all that’s required?
	Our research theme and approach
	Phoenix programming model
	Phoenix key features
	Why important?
	To summarize,
	Our experience in LU factorization
	Phoenix Demo
	LU Factorization Basics
	Asynchronous LU Factorization
	Performance when exclusively occupying the cluster
	A reference data
	with background load
	with large latencies
	Adding processes dynamically
	Conclusion

