2024 年度 / AY2024

大学院入学試験問題

Graduate School Entrance Examination Problem Booklet

数 学 2 / Mathematics 2

試験時間 / Examination Time:

14:25-15:15

注 意 事 項 / Instructions

- 試験開始の合図まで、この問題冊子を開かないこと。
 Do not open this problem booklet until the start of the examination is announced.
- 2. 本冊子に落丁, 乱丁, 印刷不鮮明の箇所などがあった場合には申し出ること.

 If you find missing, misplaced, and/or unclearly printed pages in the problem booklet, ask the examiner.
- 3. 本冊子には和文および英文の第 2 問がある. 日本語ないし英語で解答すること. This booklet contains Problem 2 both in Japanese and in English. Answer the problem in Japanese or English.
- 4. 解答用紙 1 枚が渡される. 必要なときは解答用紙の裏面を使用してもよい. You are given one answer sheet. You may use the back of the sheet if necessary.
- 5. 解答用紙上方の指定された箇所に、受験番号およびその用紙で解答する問題番号を 記入すること.

Fill the designated blanks at the top of the answer sheet with your examinee number and the problem number you are to answer.

- 6. 草稿用紙は本冊子から切り離さないこと. Do not separate the draft sheets from this problem booklet.
- 7. 解答に関係ない記号, 符号, 文言などを記入した答案は無効とする.
 Any answer sheet including marks, symbols and/or words unrelated to your answer will be invalid.
- 8. 解答用紙および問題冊子は持ち帰らないこと.
 Do not take either the answer sheet or the problem booklet out of the examination room.

	,,,
受験番号 / Examinee number	No.

上欄に受験番号を記入すること. Fill the above box with your examinee number.

(草稿用紙)

. . .

第2問

正の実数 s に対して次の積分で定義される関数 f(s) を考える.

$$f(s) = \int_0^\infty t^{s-1} \exp\left(-t\right) \mathrm{d}t.$$

以下の問いに答えよ. なお, 上式の積分が収束することは示さずに解答してよい.

- (1) f(1) の値を求めよ.
- (2) 任意の正の実数 t および非負整数 n に対して不等式 $\exp(t) > \frac{t^n}{n!}$ が成り立つ.
 - (a) 正の実数sに対して次の不等式を示せ.

$$\int_0^1 t^{s-1} \exp\left(-t\right) \mathrm{d}t < \frac{1}{s}.$$

(b) n>s>0 のとき, c>1 を満たす任意の実数 c に対して次の不等式が成り立つことを示せ、

$$\int_{1}^{c} t^{s-1} \exp\left(-t\right) \mathrm{d}t < \frac{n!}{n-s}.$$

(3) f(s) の二階微分が

$$\frac{\mathrm{d}^2 f(s)}{\mathrm{d}s^2} = \int_0^\infty g(t, s) \exp(-t) \mathrm{d}t$$

で表されるとき、関数 g(t,s) を一つ求めよ、なお、微分と積分の順序を交換できることは示さずに解答してよい。

(4) 次式で定義される D の値を求めよ.

$$D = \int_0^\infty (\log t)^2 \exp(-t) dt - \left(\int_0^\infty (\log t) \exp(-t) dt \right)^2.$$

ただし,

$$\left. \frac{\mathrm{d}^2}{\mathrm{d}s^2} \log f(s) \right|_{s=1} = \frac{\pi^2}{6}$$

となることを用いてよい.

(5) 正の実数rおよび α に対して関数p(r)を

$$p(r) = \frac{r}{\alpha} \exp\left(-\frac{r^2}{2\alpha}\right)$$

によって定める. 次式で定義される S の値を求めよ.

$$S = \int_0^\infty (\log r)^2 p(r) dr - \left(\int_0^\infty (\log r) p(r) dr \right)^2.$$

Problem 2

Consider a function f(s) defined by the following integral for positive real numbers s.

$$f(s) = \int_0^\infty t^{s-1} \exp\left(-t\right) \mathrm{d}t.$$

Answer the following questions. You may answer without showing that the above integral converges.

- (1) Find the value of f(1).
- (2) The inequality $\exp(t) > \frac{t^n}{n!}$ holds for any positive real number t and non-negative integer n.
 - (a) For positive real numbers s, show the following inequality.

$$\int_0^1 t^{s-1} \exp\left(-t\right) \mathrm{d}t < \frac{1}{s}.$$

(b) When n > s > 0, show that the following inequality holds for any real number c that satisfies c > 1.

$$\int_{1}^{c} t^{s-1} \exp\left(-t\right) \mathrm{d}t < \frac{n!}{n-s}.$$

(3) When the second-order derivative of f(s) is expressed as

$$\frac{\mathrm{d}^2 f(s)}{\mathrm{d}s^2} = \int_0^\infty g(t, s) \exp(-t) \mathrm{d}t,$$

find a function g(t, s). You may answer without showing that the order of differentiation and integration can be exchanged.

(4) Find the value of D defined as

$$D = \int_0^\infty (\log t)^2 \exp(-t) dt - \left(\int_0^\infty (\log t) \exp(-t) dt \right)^2.$$

Here, you may use the fact that the following relation holds.

$$\left. \frac{\mathrm{d}^2}{\mathrm{d}s^2} \log f(s) \right|_{s=1} = \frac{\pi^2}{6}.$$

(5) Define a function p(r) for positive real numbers r and α as

$$p(r) = \frac{r}{\alpha} \exp\left(-\frac{r^2}{2\alpha}\right).$$

Find the value of S defined as

$$S = \int_0^\infty (\log r)^2 p(r) dr - \left(\int_0^\infty (\log r) p(r) dr \right)^2.$$

(草稿用紙)

(草稿用紙)