Department of Mathematical Informatics

Graduate School Entrance Examination Problem Booklet

Specialized Subject: Mathematical Informatics

August 21, 2018 (Tuesday) 10:00 - 13:00

Answer 3 out of the 5 problems

Please note:

- (1) Do not open this booklet until the starting signal is given.
- (2) Notify the proctor if there are missing or incorrect pages in your booklet.
- (3) Answer in Japanese or English.
- (4) Three answer sheets will be given. Use one sheet per problem. If necessary, you may use the back of the sheet.
- (5) Fill in the examinee number and the problem number in the designated place of each answer sheet. Do not put your name.
- (6) Do not separate a draft sheet from the booklet.
- (7) Any answer sheet with marks or symbols unrelated to the answer will be invalid.
- (8) Leave the answer sheets and this booklet in the examination room.

Examinee number	No.	Problem numbers	
-----------------	-----	-----------------	--

Fill in your examinee number.

Fill in numbers of the three answered problems.

Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ and $B = (b_{ij}) \in \mathbb{R}^{n \times n}$ be real square matrices of order n satisfying

$$a_{ij} \ge 0 \ (i, j = 1, 2, \dots, n), \quad \sum_{i=1}^{n} a_{ij} = 1 \ (j = 1, 2, \dots, n), \quad B = \alpha A + \frac{1 - \alpha}{n} \mathbb{1} \mathbb{1}^{\top},$$

where \top stands for transpose, α is a real number satisfying $0 < \alpha < 1$, and $\mathbb{1} = (1, \dots, 1)^{\top} \in \mathbb{R}^n$ denotes the vector with all components equal to 1. For $v = (v_1, \dots, v_n)^{\top} \in \mathbb{R}^n$, let $||v||_1 := \sum_{i=1}^n |v_i|$. Answer the following questions.

- (1) Obtain the maximum absolute value of the eigenvalues of the matrix A.
- (2) Show that there exists a vector $x \in \mathbb{R}^n$ that has a nonnegative value in each component and satisfies

$$Bx = x, \quad \mathbb{1}^{\top} x = 1.$$

You may use the following fact:

"Every continuous map from a nonempty compact convex set in \mathbb{R}^n to itself has a fixed point."

(3) Show that for a vector $q = (q_1, \dots, q_n)^{\top} \in \mathbb{R}^n$ satisfying $\mathbb{1}^{\top} q = 0$, it holds that

$$\left| \sum_{j=1}^{n} b_{ij} q_{j} \right| \leq \sum_{j=1}^{n} b_{ij} |q_{j}| - \frac{1-\alpha}{n} ||q||_{1} \quad (i=1,2,\ldots,n).$$

(4) Show that for a positive integer N, a vector $x \in \mathbb{R}^n$ with the conditions in (2) satisfies

$$\left\| B^N \frac{1}{n} - x \right\|_1 \le \alpha^N \left\| \frac{1}{n} - x \right\|_1.$$

Let \mathbb{R} be the set of real numbers. Let X_i $(i=1,2,\ldots,k)$ be k independently identically distributed random variables such that each X_i is an \mathbb{R}^2 -valued random variable obeying the bivariate normal distribution with mean $\mathbf{0} = (0,0)^{\top}$ and covariance $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Here \top stands for transpose. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be defined by $\varphi(x) := \max\{x,0\}$ $(x \in \mathbb{R})$. For $u \in \mathbb{R}^2$, let

$$g_u(x_1, \dots, x_k) := \frac{1}{k} \sum_{j=1}^k \varphi(u^\top x_j) \quad (x_j \in \mathbb{R}^2, \ j = 1, 2, \dots, k).$$

Then, for a fixed nonzero vector $u^* \in \mathbb{R}^2 \setminus \{0\}$, we consider the problem of minimizing

$$L(u) = \mathbb{E}_X \left[\left(g_u(X_1, \dots, X_k) - g_{u^*}(X_1, \dots, X_k) \right)^2 \right]$$

with respect to $u \in \mathbb{R}^2$, where E_X denotes the expectation with respect to the random variable $X = (X_1, \dots, X_k)$. Answer the following questions.

(1) Calculate $E_X[\varphi(u^\top X_i)\varphi(u^\top X_j)]$ $(1 \le i, j \le k)$, and write it by using u.

In the following, consider the case of k=1. For $u \neq \mathbf{0}$, let $0 \leq \theta \leq \pi$ be the angle between u and u^* , namely, $\theta := \cos^{-1}\left(\frac{u^\top u^*}{\sqrt{(u^\top u)(u^{*\top}u^*)}}\right)$.

(2) Obtain the value of the following integral:

$$\int_0^\infty \left(\int_{\theta-\pi/2}^{\pi/2} r^3 \cos(\psi) \cos(\theta - \psi) \frac{1}{2\pi} \exp\left(-\frac{r^2}{2}\right) d\psi \right) dr.$$

- (3) Calculate L(u), and write it by using ||u||, $||u^*||$ and θ .
- (4) Enumerate all local optimal solutions for the optimization problem of minimizing L(u) over $u \in \mathbb{R}^2$. Moreover, enumerate all global optimal solutions.

Let \mathbb{R}^n denote the *n*-dimensional Euclidean space. The inner product of $x, y \in \mathbb{R}^n$ is denoted by $\langle x, y \rangle$, and the norm of x is defined by $||x|| := \sqrt{\langle x, x \rangle}$. Answer the following questions.

- (1) For a nonempty closed set $K \subseteq \mathbb{R}^n$ and a point $x \in \mathbb{R}^n$, show the following:
 - (1-1) There exists $y \in K$ satisfying $||x y|| = \inf_{z \in K} ||x z||$.
 - (1-2) If K is convex, then such a point y is uniquely determined.
 - (1-3) If K is convex and x is not contained in K, then there exist $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that

$$\langle c, x \rangle > d,$$

 $\langle c, z \rangle \leq d \quad (z \in K).$

- (2) For a subset \mathcal{A} of \mathbb{R}^n , let $C(\mathcal{A}) \subseteq \mathbb{R}^n$ denote the set of all nonnegative combinations of elements in \mathcal{A} . Namely, $C(\mathcal{A})$ is the set consisting of points x represented as $x = \lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_m a_m$ for elements a_1, a_2, \ldots, a_m in \mathcal{A} $(m \geq 1)$ and nonnegative reals $\lambda_1, \lambda_2, \ldots, \lambda_m$.
 - (2-1) For $A \subseteq \mathbb{R}^n$, show that the following holds:

$$C(\mathcal{A}) = \bigcup_{\mathcal{B}} C(\mathcal{B}),$$

where the union is taken over all linearly independent subsets \mathcal{B} of \mathcal{A} .

- (2-2) Show that if $\mathcal{A} \subseteq \mathbb{R}^n$ is a finite set, then $C(\mathcal{A})$ is a closed set.
- (3) For an $n \times m$ real matrix $A \in \mathbb{R}^{n \times m}$ and n-dimensional vector $x \in \mathbb{R}^n$, consider the following two properties (P) and (Q):
 - (P) There exists $\lambda \in \mathbb{R}^m$ satisfying $A\lambda = x$ and $\lambda \geq 0$.
 - (Q) There exists $c \in \mathbb{R}^n$ satisfying $c^{\top}A \leq 0$ and $c^{\top}x > 0$.

Here \top stands for transpose, and for a vector u, notation $u \ge 0$ ($u \le 0$) means that each component of u is nonnegative (nonpositive). Show the following:

- (3-1) It never happens that both of (P) and (Q) hold.
- (3-2) (P) or (Q) holds.

For a complex square matrix $X \in \mathbb{C}^{n \times n}$ of order n, let $\mathrm{e}^X := \sum_{k=0}^\infty \frac{1}{k!} X^k$, where X^0 is the identity matrix I of order n. Furthermore, the norm of an n-dimensional complex vector $x = (x_1, \dots, x_n)^\top \in \mathbb{C}^n$ is defined by $\|x\| := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$, where \top stands for transpose. Also, the norm of a matrix $X \in \mathbb{C}^{n \times n}$ is defined by $\|X\| := \sup_{x \in \mathbb{C}^n, \ \|x\| = 1} \|Xx\|$. Then, for any $X, Y \in \mathbb{C}^{n \times n}$, it holds that $\|X + Y\| \le \|X\| + \|Y\|$ and $\|XY\| \le \|X\| \|Y\|$. Answer the following questions.

(1) For $X \in \mathbb{C}^{n \times n}$, prove the following inequalities:

$$\|\mathbf{e}^X\| \le \mathbf{e}^{\|X\|}, \quad \|\mathbf{e}^X - \mathbf{I}\| \le \|X\| \, \mathbf{e}^{\|X\|}, \quad \|\mathbf{e}^X - \mathbf{I} - X\| \le \|X\|^2 \, \mathbf{e}^{\|X\|}.$$

In the following, let $A, B \in \mathbb{C}^{n \times n}$, and let m be an integer greater than or equal to 1. Define $P := e^{(A+B)/m}$ and $Q := e^{A/m}e^{B/m}$.

(2) Show the following inequality:

$$||P^m - Q^m|| \le m ||P - Q|| e^{\frac{m-1}{m}(||A|| + ||B||)}$$

You may use the relation $P^m - Q^m = \sum_{i=0}^{m-1} P^i(P-Q)Q^{m-1-i}$ without a proof.

(3) Show the following equality:

$$P - Q = g\left(\frac{1}{m}(A+B)\right) - g\left(\frac{1}{m}A\right) - g\left(\frac{1}{m}B\right) - f\left(\frac{1}{m}A\right) f\left(\frac{1}{m}B\right),$$
 where $f(X) := e^X - I$ and $g(X) := e^X - I - X$ for $X \in \mathbb{C}^{n \times n}$.

(4) Show the following inequality:

$$||P^m - Q^m|| \le \frac{2}{m} (||A|| + ||B||)^2 e^{||A|| + ||B||}.$$

(5) Consider the initial value problem of the ordinary differential equation

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = (A+B)x(t), \quad x(0) = v$$

with respect to an n-dimensional complex vector-valued function x(t). Let the sequence \tilde{x}^0 , \tilde{x}^1 , ..., \tilde{x}^{2m} of n-dimensional complex vectors be determined by $\tilde{x}^0 = v$ and

$$\tilde{x}^{k+1} = \begin{cases} e^{B/m} \, \tilde{x}^k & (k \text{ is even}), \\ e^{A/m} \, \tilde{x}^k & (k \text{ is odd}), \end{cases} \qquad (k = 0, 1, \dots, 2m - 1).$$

Show that for any real number α with $0 < \alpha < 1$,

$$\lim_{m \to \infty} m^{\alpha} \left\| x(1) - \tilde{x}^{2m} \right\| = 0.$$

Consider a tree T with n nodes. Define a centroid of T as any node c of T satisfying the following condition:

"Each of trees T_1, T_2, \ldots obtained from T by removing the node c has at most n/2 nodes."

Answer the following questions, where we assume that any number can be represented in O(1) space.

(1) Let T_1, T_2, \ldots be trees obtained from the tree T by removing a node v. Show that if v is not a centroid of T, then centroids of T exist in exactly one of the trees T_1, T_2, \ldots

From T, we create another rooted tree R with n nodes. There is a one-to-one correspondence between the nodes in T and those in R. Let \bar{v} denote the node in R corresponding to a node v in T. The rooted tree R = R(T) is obtained by the following recursive algorithm:

- If T consists only of one node v, then R(T) is defined as the rooted tree consisting only of one node \bar{v} .
- Otherwise, choose a centroid c of T arbitrarily, and for trees T_1, T_2, \ldots obtained from T by removing c, create $R_1 = R(T_1), R_2 = R(T_2), \ldots$ recursively. Then create a new node \bar{c} , and define R(T) as the rooted tree whose root is \bar{c} and its children are the roots of R_1, R_2, \ldots

Figure 1 shows the procedure to create a rooted tree R from a tree T.

- (2) Show that the height of R is $O(\log n)$.
- (3) Consider a node \bar{v} of R. Let R_i and R_j be distinct subtrees which are children of \bar{v} , and let \bar{v}_i and \bar{v}_j be nodes in R_i and R_j , respectively. Show that a simple path in T from v_i to v_j passes the node v, and moreover, the path passes only nodes of T corresponding to nodes of the subtree rooted at \bar{v} in R.
- (4) For nodes \bar{v}, \bar{w} in R, define $lca(\bar{v}, \bar{w})$ as the common ancestor of \bar{v} and \bar{w} whose path from the root has the maximum length. Show that $lca(\bar{v}, \bar{w})$ can be computed in $O(\log n)$ time.
- (5) Show that by adding a data structure of $O(n \log n)$ space to T in advance, the length of a simple path between two nodes of T can be computed in $O(\log n)$ time.

Figure 1. (Top left) a tree T. (Top right) trees T_1, T_2 obtained from T by removing a centroid c. (Bottom left) the rooted trees $R_1 = R(T_1), R_2 = R(T_2)$ created from T_1, T_2 . (Bottom right) the rooted tree R = R(T).