数理情報学専攻

修士課程入学試験問題

専門科目 数理情報学

平成29年8月22日(火) 10:00~13:00 5問出題, 3問解答

This booklet is an informal English translation of the original examination booklet. Answer in Japanese or English.

Answer three out of the five problems.

Please note:

- (1) Do not open this booklet until the starting signal is given.
- (2) Notify the proctor if there are missing or incorrect pages in your booklet.
- (3) Three answer sheets will be given. Use one sheet per problem. If necessary, you may use the back of the sheet.
- (4) Fill in the examinee number and the problem number in the designated place of each answer sheet. Do not put your name.
- (5) Do not separate a draft sheet from the booklet.
- (6) Any answer sheet with marks or symbols unrelated to the answer will be invalid.
- (7) Leave the answer sheets and this booklet in the examination room.

Examinee No		Problem numbers			ı
-------------	--	--------------------	--	--	---

Fill in your examinee number.

Fill in numbers of the three answered problems.

Let \mathbb{C} be the field of complex numbers. Let A be an n by n matrix over \mathbb{C} . An invariant subspace of A is a subspace U of \mathbb{C}^n such that $AU \subseteq U$. Let \mathcal{S}_A denote the set of all invariant subspaces of A. A partial order \preceq on \mathcal{S}_A is defined as the inclusion relation \subseteq , and \mathcal{S}_A is regarded as a partially ordered set.

Answer the following questions. Refer to the remark below for lattice and Hasse diagram.

- (1)(1-1) Show that S_A is a lattice.
 - (1-2) Show that S_A and $S_{P^{-1}AP}$ are isomorphic, as a partially ordered set, for any nonsingular matrix P.
 - (1-3) Show that $S_A = S_{A+\alpha I}$ holds for any complex number α , where I is the identity matrix.
- (2) Draw the Hasse diagram of S_A when A is each of the following matrices:

$$\left(\begin{array}{cccc} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{array}\right), \, \left(\begin{array}{cccc} -2 & -1 & -2 \\ 4 & 3 & 2 \\ 4 & 1 & 4 \end{array}\right), \, \left(\begin{array}{ccccc} 3 & 1 & 1 \\ -2 & -1 & 0 \\ -3 & -1 & -1 \end{array}\right).$$

(3) Explain for what kind of matrix A the corresponding S_A consists of a finite number of elements, and explain how the Hasse diagram of such S_A looks like.

(Remark). A partially ordered set \mathcal{L} with partial order \preceq is called a lattice if for every pair $x, y \in \mathcal{L}$ the following two properties hold:

- There exists a unique maximal element in the set $\{u \in \mathcal{L} \mid x \succeq u \leq y\}$.
- There exists a unique minimal element in the set $\{u \in \mathcal{L} \mid x \leq u \succeq y\}$.

Also, the Hasse diagram of \mathcal{L} is the directed graph obtained from \mathcal{L} by making every element of \mathcal{L} a vertex and adding an edge from x to y for every pair of distinct elements $x, y \in \mathcal{L}$ with the following property:

• $x \leq y$, and $\{z \in \mathcal{L} \mid x \leq z \leq y\} = \{x, y\}$.

Let \mathbb{R} be the set of real numbers. Suppose that P_1 and P_2 are probability distributions on \mathbb{R} . When P_1 and P_2 have probability density functions $p_1, p_2 : \mathbb{R} \to \mathbb{R}$, respectively, satisfying $0 < p_1(x)/p_2(x) < \infty$ ($\forall x \in \mathbb{R}$), the Kullback-Leibler divergence from P_2 to P_1 is defined by

$$D(P_1||P_2) = \int_{-\infty}^{\infty} p_1(x) \log \left(\frac{p_1(x)}{p_2(x)}\right) dx.$$

The normal distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 > 0$ is denoted by $N(\mu, \sigma^2)$. The expectation of a random variable Z is denoted by E[Z]. For a cumulative distribution function Ψ , the function $\Psi^{-1}:(0,1)\to\mathbb{R}$ is defined by $\Psi^{-1}(t)=\inf\{x\in\mathbb{R}\mid \Psi(x)>t\}$. Answer the following questions.

- (1) Obtain $D(P_1||P_2)$ when P_1 and P_2 are $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, respectively.
- (2) Consider two random variables X and Y that have marginal distributions P_1 and P_2 , respectively. Assume that X and Y have finite second moments and satisfy $P_1(X \ge 0) = P_2(Y \ge 0) = 1$.
 - (2-1) Let P_{XY} denote the joint distribution of X and Y. Show the following equality:

$$E[X \cdot Y] = \int_0^\infty \int_0^\infty P_{XY}(\{X \ge x\} \cap \{Y \ge y\}) dx dy.$$

(2-2) Let F and G denote the cumulative distribution functions of the probability distributions P_1 and P_2 , respectively. Let U be a random variable obeying the uniform distribution on the open interval (0,1). Then, show that the inequality

$$E[(X - Y)^2] \ge E[(F^{-1}(U) - G^{-1}(U))^2]$$

holds.

(3) Using the cumulative distribution functions F, G of P_1, P_2 and a random variable U obeying the uniform distribution on the open interval (0,1), define a distance between P_1 and P_2 as

$$W(P_1, P_2) = \sqrt{\mathbb{E}[(F^{-1}(U) - G^{-1}(U))^2]}$$

Assume that P_1 and P_2 are $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, respectively. Show that

$$W(P_1, P_2)^2 = (\mu_1 - \mu_2)^2 + (\sigma_1 - \sigma_2)^2$$

holds. Moreover, show that

$$W(P_1, P_2)^2 \le 2\sigma_2^2 D(P_1||P_2)$$

holds, and derive a necessary and sufficient condition for the equality to hold in this inequality.

Let n be a positive integer. Let \mathbb{R} be the field of real numbers. For a square matrix $M \in \mathbb{R}^{n \times n}$, denote the sum of diagonal elements of M by $\operatorname{tr}(M)$ and the transpose of M by M^{\top} . For square matrices $M, N \in \mathbb{R}^{n \times n}$, let $\langle M, N \rangle := \operatorname{tr}(M^{\top}N)$. The sphere \mathbb{S}^2 is defined by $\mathbb{S}^2 := \{(\xi, \eta, \zeta)^{\top} \in \mathbb{R}^3 \mid \xi^2 + \eta^2 + \zeta^2 = 1\}$.

For $C = (c_{ij}) \in \mathbb{R}^{n \times n}$, consider the following optimization problem (P1) with variables $p_1, \ldots, p_n \in \mathbb{S}^2$:

(P1) Maximize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} p_{i}^{\top} p_{j}$$
subject to
$$p_{i} \in \mathbb{S}^{2} \quad (i = 1, \dots, n).$$

Answer the following questions.

- (1) Show that the optimal value of (P1) is less than or equal to the optimal value of the following optimization problem (P2) with variable $X \in \mathbb{R}^{n \times n}$:
 - (P2) Maximize $\langle C, X \rangle$ subject to each element on the diagonal of X is 1, X is a symmetric positive semidefinite matrix.

Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be the permutation matrix corresponding to the cyclic permutation (1, 2, ..., n), that is,

$$a_{ij} = \begin{cases} 1 & (j - i \equiv 1 \mod n), \\ 0 & (\text{otherwise}). \end{cases}$$

Then the equality

$$\sum_{k=0}^{n-1} A^{-k} X A^k = \sum_{\ell=0}^{n-1} \langle A^{\ell}, X \rangle A^{\ell}$$

holds for any square matrix $X \in \mathbb{R}^{n \times n}$.

In the following, suppose that C is written as $C = \sum_{k=0}^{n-1} d_k A^k$ with $d_k \in \mathbb{R}$ $(k = 0, \ldots, n-1)$.

(2) Show that, if X is an optimal solution of (P2), then $\frac{1}{n} \sum_{k=0}^{n-1} A^{-k} X A^k$ is also an optimal solution of (P2). In addition, show that the optimal value of (P2) coincides with the optimal value of the following optimization problem (P3) with variables $y_0, y_1, \ldots, y_{n-1} \in \mathbb{R}$ and $Y \in \mathbb{R}^{n \times n}$:

(P3) Maximize
$$\langle C, Y \rangle$$

subject to $Y = \sum_{k=0}^{n-1} y_k A^k$,
each element on the diagonal of Y is 1,
 Y is a symmetric positive semidefinite matrix.

(3) Show that the optimal value of (P2) coincides with the optimal value of the following linear programming problem (P4) with variables $y_1, \ldots, y_{n-1} \in \mathbb{R}$:

(P4) Maximize
$$nd_0 + \sum_{i=1}^{n-1} nd_i y_i$$

subject to $\sum_{i=1}^{n-1} y_i \cos \frac{2\pi i j}{n} \ge -1$ $(j = 0, ..., n-1),$
 $y_j = y_{n-j}$ $(j = 1, ..., n-1).$

(4) Obtain the optimal value and an optimal solution of (P1) for n=4 and $(d_0,d_1,d_2,d_3)=(0,3,-4,3)$.

Let \mathbb{R} be the field of real numbers. Let us consider the following ordinary differential equations regarding functions $\theta_1, \theta_2 : \mathbb{R} \to \mathbb{R}$:

(*)
$$\begin{cases} \frac{d\theta_{1}(t)}{dt} = f(\theta_{1}(t), \theta_{2}(t)) := K \sin(\theta_{1}(t) - \theta_{2}(t)) - \sin(\theta_{1}(t)), \\ \frac{d\theta_{2}(t)}{dt} = g(\theta_{1}(t), \theta_{2}(t)) := K \sin(\theta_{2}(t) - \theta_{1}(t)) - \sin(\theta_{2}(t)), \end{cases}$$

where $K > \frac{1}{2}$. Answer the following questions.

- (1) Obtain all the stationary solutions $(\theta_1(t), \theta_2(t)) = (\theta_1^*, \theta_2^*)$ of the ordinary differential equations (*) in the ranges $0 \le \theta_1^* < 2\pi$ and $0 \le \theta_2^* < 2\pi$, where θ_1^* and θ_2^* are constants independent of t.
- (2) Let us define a matrix J by

$$J(\theta_1, \theta_2) := \begin{pmatrix} \frac{\partial f(\theta_1, \theta_2)}{\partial \theta_1} & \frac{\partial f(\theta_1, \theta_2)}{\partial \theta_2} \\ \frac{\partial g(\theta_1, \theta_2)}{\partial \theta_1} & \frac{\partial g(\theta_1, \theta_2)}{\partial \theta_2} \end{pmatrix}.$$

A stationary solution $(\theta_1(t), \theta_2(t)) = (\theta_1^*, \theta_2^*)$ is stable if all the real parts of the eigenvalues of $J(\theta_1^*, \theta_2^*)$ are negative. Determine whether the stationary solutions depending on K among those obtained in (1) are stable or not.

(3) Show that there exists a function $V(\theta_1, \theta_2)$ such that

$$f(\theta_1, \theta_2) = -\frac{\partial V(\theta_1, \theta_2)}{\partial \theta_1}, \ g(\theta_1, \theta_2) = -\frac{\partial V(\theta_1, \theta_2)}{\partial \theta_2}.$$

(4) Show that the ordinary differential equations (*) have no periodic solution. Here, a solution $\theta(t) := (\theta_1(t), \theta_2(t))$ is called periodic if there exists T > 0 such that $\theta(t+T) = \theta(t)$ and $\theta(t+s) \neq \theta(t)$ for any s with 0 < s < T.

Let m, n be natural numbers with $m > n \ge 1$, and denote by gcd(m, n) the greatest common divisor of m and n. Let \mathbb{Z} be the integer ring. Answer the following questions.

- (1) Show that $m\mathbb{Z} + n\mathbb{Z}$ is a principal ideal of \mathbb{Z} generated by gcd(m, n).
- (2) Let r be the remainder of the division of m by n. Show that gcd(m, n) = gcd(n, r) holds.
- (3) Construct an algorithm that takes natural numbers m, n with $m > n \ge 1$ as an input and computes integers x, y satisfying $mx + ny = \gcd(m, n)$ by using $O(\log m)$ arithmetic operations over \mathbb{Z} . Here, the arithmetic operations over \mathbb{Z} are operations to compute the addition, the subtraction, the multiplication, and the quotient and remainder, for given two integers.
- (4) Show that the quotient ring $\mathbb{Z}/p\mathbb{Z}$ is a field if and only if p is prime.
- (5) Compute the inverse of 822 in the multiplicative group $(\mathbb{Z}/2017\mathbb{Z})^*$ for prime 2017.