数理情報学専攻

修士課程入学試験問題

専門科目 数理情報学

平成28年8月23日(火) 10:00~13:00

5問出題, 3問解答

This booklet is an informal English translation of the original examination booklet. Answer in Japanese or English.

Answer three out of the five problems.

Please note:

- (1) Do not open this booklet until the starting signal is given.
- (2) Notify the supervisor if there are missing or incorrect pages in your booklet.
- (3) Three answer sheets will be given. Use one sheet per problem. If necessary, you may use the back of the sheet.
- (4) Fill in the examinee number and the problem number in the designated place of each answer sheet. Do not put your name.
- (5) Do not separate a draft sheet from the booklet.
- (6) Any answer sheet with marks or symbols unrelated to the answer will be invalid.
- (7) Leave the answer sheets and this booklet in the examination room.

Examinee number	No.	Problem numbers			
--------------------	-----	-----------------	--	--	--

Fill in your examinee number.

Fill in numbers of the three answered problems.

Let $F: \mathbb{R} \to \mathbb{R}$ be a map defined by $F(x) = a^x$, where \mathbb{R} denotes the set of real numbers, x is a real variable, a is a positive real constant, and a^x is a to the power x. The derivative of F(x) is denoted by $f(x) = \frac{dF(x)}{dx}$. When $F(\bar{x}) = \bar{x}$ and $|f(\bar{x})| < 1$, we call \bar{x} a stable fixed point of F. Answer the following questions.

- (1) Suppose that \bar{x} is a stable fixed point of F. Show that there exists an open interval J including \bar{x} such that $\lim_{n\to\infty} F^n(x) = \bar{x}$ for every $x\in J$, where $F^0(x) = x$ and $F^n(x) = F(F^{n-1}(x))$ for each natural number n.
- (2) Find the range of values of a such that F admits a stable fixed point \bar{x} , and the corresponding range of values of \bar{x} .

Suppose that there are two coins A and B. The probability of getting a head when tossing A is θ_A (0 < θ_A < 1). The probability of getting a head when tossing B is θ_B (0 < θ_B < 1). A sequence of n coin tosses is generated according to the following rule. If the coin shows a head, then the same coin is used for the next toss. If the coin shows a tail, then the other coin is used for the next toss. One of the two coins A and B is picked at random with probability 1/2 for the initial toss. Answer the following questions.

- (1) Obtain the probability that the coin A is used on the nth toss.
- (2) Let H(n) be the expectation of the number of heads in the n tosses. Obtain

$$\lim_{n\to\infty}\frac{H(n)}{n}.$$

(3) Show that the value obtained in (2) is greater than $(\theta_A + \theta_B)/2$ if $\theta_A \neq \theta_B$.

Let p be a constant satisfying 0 . For a real-valued random variable <math>X, define

$$R[X] = \frac{1}{1-p} \int_{p}^{1} F_{X}^{-1}(u) du,$$

provided that the distribution function $F_X : \mathbb{R} \to (0,1)$ of X has its inverse F_X^{-1} and satisfies $\int_0^1 |F_X^{-1}(u)| du < \infty$, where \mathbb{R} denotes the set of real numbers and $(0,1) = \{x \mid 0 < x < 1\}$. Answer the following questions.

Here the expectation of a random variable X is denoted by E[X]. For an event A, let Pr(A) denote the probability that A occurs, and let I_A denote the random variable that takes 1 if A occurs and 0 otherwise.

- (1) Let T be a random variable with the distribution function $F_T(t) = 1/(1 + e^{-t})$. Obtain R[T].
- (2) Consider a random variable X for which R[X] is definable, and let B be the event that $X \ge F_X^{-1}(p)$ holds. Show that

$$Pr(B) = 1 - p, \quad R[X] = \frac{E[X \cdot I_B]}{1 - p}$$

hold. In addition, show that the inequality

$$\mathbb{E}[X \cdot I_A] \leq \mathbb{E}[X \cdot I_B]$$

holds for any event A satisfying Pr(A) = 1 - p.

(3) For random variables X and Y that are not necessarily independent, show that the inequality

$$R[X+Y] \le R[X] + R[Y]$$

holds, provided that all of R[X], R[Y], and R[X+Y] are definable.

For square matrices A, B of the same size, we define (A, B) and [A, B] by

$$(A,B) = AB + BA,$$

 $[A,B] = AB - BA.$

The transpose of a matrix A is denoted by A^{T} , and a matrix A is said to be skew-symmetric if $A^{\mathsf{T}} = -A$. Consider the initial value problem with respect to a real square matrix X(t):

(*)
$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} X(t) = [(M, X(t)), X(t)], \\ X(0) = X_0, \end{cases}$$

where M is a skew-symmetric matrix of the same size as X(t), and X_0 is a symmetric matrix. Answer the following questions.

(1) Show that the solution X(t) of (*) is symmetric for all $t \geq 0$.

Using the solution X(t) of (*), consider another differential equation with respect to a real square matrix Q(t) of the same size as X(t):

$$(**) \begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} Q(t) = (M, X(t))Q(t), \\ Q(0) = I, \end{cases}$$

where I denotes the identity matrix.

- (2) Show that the solution X(t) of (*) for $t \geq 0$ can be written as $X(t) = Q(t)X_0Q(t)^{\mathsf{T}}$, where Q(t) is the solution of (**).
- (3) Show that the solution X(t) of (*) has the same eigenvalues as X_0 for all $t \geq 0$.

Next, consider a numerical solution method for the initial value problem (*). Let Δt be the discretization width of t, and compute approximate solutions X_k , Q_k to X(t), Q(t) at $t = k\Delta t$ (k = 1, 2, ...) by the recursion:

$$(\dagger) \left\{ \begin{array}{l} \frac{Q_{k} - Q_{k-1}}{\Delta t} = (M, X_{k-1}) \frac{Q_{k} + Q_{k-1}}{2}, \\ X_{k} = Q_{k} X_{k-1} {Q_{k}}^{\top}, \end{array} \right.$$

where $Q_0 = Q(0) = I$, and X_0 is the one given in (*).

- (4) Show that X_k , Q_k (k = 1, 2, ...) satisfying (†) are uniquely determined and that X_k are symmetric matrices.
- (5) Show that the approximate solutions X_k (k = 1, 2, ...) have the same eigenvalues as X_0 .

We consider a connected undirected graph G = (V, E) with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and edge set E. Let d_i denote the number of edges incident to v_i . Here G is assumed to have neither self-loops nor multiple edges. Let $A = (a_{ij})$ and $L = (l_{ij})$ be $n \times n$ matrices defined by

$$a_{ij} = \begin{cases} 1 & \text{(if } \{v_i, v_j\} \in E), \\ 0 & \text{(otherwise)}, \end{cases} \quad l_{ij} = \begin{cases} -1 & \text{(if } \{v_i, v_j\} \in E), \\ d_i & \text{(if } i = j), \\ 0 & \text{(otherwise)}. \end{cases}$$

Answer the following questions.

- (1) What does the (i, j)-component of the kth power A^k of the matrix A represent?
- (2) The distance between two vertices is defined to be the minimum number of edges in a path connecting them. Show that the distance between any pair of vertices is less than the number of distinct eigenvalues of A.
- (3) Show that $\sum_{i=1}^{n} u_i = 0$ holds for an eigenvector $u = (u_i)$ corresponding to a nonzero eigenvalue of the matrix L.
- (4) Show that all the eigenvalues of the matrix L are nonnegative real numbers.
- (5) We define the function $V: \mathbb{R}^n \to \mathbb{R}$ by

$$V(x) = \frac{1}{2} \sum_{1 \leq i < j \leq n} a_{ij} (x_i - x_j)^2 \quad (x \in \mathbb{R}^n),$$

and consider a system of differential equations

$$\frac{\mathrm{d}x_i(t)}{\mathrm{d}t} = -\frac{\partial V(x)}{\partial x_i}\bigg|_{x=x(t)} \quad (i=1,2,\ldots,n)$$

for $x(t) = (x_1(t), x_2(t), \dots, x_n(t))$. Obtain the limit $\bar{x} = \lim_{t \to \infty} x(t)$ of the solution x(t) for an initial value $x(0) = (c_1, c_2, \dots, c_n)$, and discuss the rate of the convergence.