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1 Introduction

The quantification of convergence rates of MCMC is
a critical issue. There are two principal metrics in this
literature: the total variation distance and the Wasser-
stein distance. While the convergence rate in the total
variation distance has been intensively studied (e.g., [2]),
there is much room for developing the convergence rate
analysis in the Wasserstein distance, particularly for the
Metropolis-Hastings algorithm, which is one of the most
widely used classes of MCMC including random-walk
Metropolis (RWM), Gibbs sampler, Metropolis Adjusted
Langevin Algorithm (MALA), and Hamiltonian Monte
Carlo (HMC).

In this thesis, we consider target distributions defined
on R and analyze the convergence rates of various MCMC
algorithms (mainly Metropolis-Hastings) in 1-Wasserstein
distance by proposing a new quantity. The proposal can
be understood as an improved variant of the coarse Ricci
curvature, which is a representative quantity for deriving
convergence rates in the Wasserstein distance [1].

2 Preliminaries

We let (X , 𝑑) denote a Polish space and B(X ) be the
Borel 𝜎-algebra over X . We first state the definition of
the 1-Wasserstein distance.

Definition 2.1. For probability distributions 𝜈1 and 𝜈2 on
X , the 1-Wasserstein distance between them, 𝑊1 (𝜈1, 𝜈2),
is defined as

𝑊1 (𝜈1, 𝜈2) := inf
𝜉 ∈Π(𝜈1.𝜈2)

∫
(𝑥,𝑦) ∈X×X

𝑑 (𝑥, 𝑦)𝜉 (d𝑥,d𝑦),

where Π(𝜈1, 𝜈2) denotes the set of couplings of 𝜈1 and 𝜈2.

In the special case where X = R and 𝑑 is the Euclidean
distance, we can express the distance explicitly using cu-
mulative distribution functions.

Theorem 2.2. Let 𝜈1 and 𝜈2 be probability distributions

on R. Then, the following holds:

𝑊1 (𝜈1, 𝜈2) =
∫
R

����∫ 𝑥

−∞
d(𝜈1 − 𝜈2)

����d𝑥.
This property of 1-Wasserstein distance plays signifi-

cantly important role in this thesis.
As previously noted, the coarse Ricci curvature pro-

posed by [1] can quantify the convergence rate w.r.t. 𝑊1.
Its definition is as follows.

Definition 2.3. Let 𝑥, 𝑦 ∈ X be two distinct points. The
coarse Ricci curvature of a transition kernel {𝑚𝑥}𝑥∈X
along (𝑥𝑦), 𝜅(𝑥, 𝑦), is defined as

𝜅(𝑥, 𝑦) := 1−
𝑊1 (𝑚𝑥 ,𝑚𝑦)

𝑑 (𝑥, 𝑦) .

The coarse Ricci curvature is related to the convergence
rate as the following proposition states (See [1, Corollary
21] for its proof):

Proposition 2.4. For a transition kernel {𝑚𝑥}𝑥∈X , if
𝜅 := inf (𝑥,𝑦) ∈X×X 𝜅(𝑥, 𝑦) > 0 holds, then {𝑚𝑥}𝑥∈X has a
unique stationary distribution. Moreover, the convergence
rate of {𝑚𝑥}𝑥∈X is𝑂 ((1− 𝜅)𝑛) for any initial distribution.

3 The proposed variant

Let {𝑚𝑥}𝑥∈R be the transition kernel of a Markov
chain on R. In addition, for each 𝑥 ∈ R, we let 𝐹𝑥

denote the cumulative distribution function of 𝑚𝑥 , i.e.,
𝐹𝑥 (𝑧) :=

∫ 𝑧

−∞𝑚𝑥 (𝑠)d𝑠 for 𝑧 ∈ R. We introduce the follow-
ing quantity for Markov chains on R:

𝑊 (𝑥) :=
∫ ∞

−∞

����𝜕𝐹𝑥

𝜕𝑥
(𝑧)

����d𝑧 (1)

This is the proposed variant of the coarse Ricci curvature.
The following theorem asserts that if sup𝑥∈R𝑊 (𝑥) < 1,
then sup𝑥∈R𝑊 (𝑥) directly determines the convergence rate
of the Markov chain.

Theorem 3.1. Suppose that 𝐹𝑥 (𝑧) is differentiable w.r.t.
𝑥 for each 𝑧. In addition, assume that lim𝑦→∞ 𝐹𝑦 (𝑧) is a
constant which is independent of 𝑧. If 𝜔 := sup𝑥∈R𝑊 (𝑥) <
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1, then the convergence rate of the Markov chain with
respect to 1-Wasserstein distance is given by 𝑂 (𝜔𝑛).

Next, we state a result which relates our proposed quan-
tity 𝑊 (𝑥) to the coarse Ricci curvature.

Theorem 3.2. If there exists some 𝑔𝑥 : R→ R such that∫
R
𝑔𝑥 (𝑧)d𝑧 < ∞ and |𝐹𝑥+𝜖 (𝑧)−𝐹𝑥 (𝑧) |

𝜖 ≤ 𝑔𝑥 (𝑧) for all 𝑧 ∈ R,
then lim𝜖→0 (1− 𝜅(𝑥, 𝑥 + 𝜖)) =𝑊 (𝑥) holds.

Under the assumption in Theorem 3.2, sup𝑥∈R𝑊 (𝑥) ≤
1− inf (𝑥,𝑦) ∈R2 𝜅(𝑥, 𝑦) holds, and thus the proposal is en-
sured to derive tighter convergence rates than the coarse
Ricci curvature.

4 Examples of the proposed quantity

As notation, we let
Met
𝑊 (𝑥) denote the proposed quantity

of a Markov chain with the Metropolis test.
4.1 Example 1. (random walk Metropolis)

We give an example where the proposed quantity (1) can
derive a convergence rate of the random walk Metropolis
(RWM) while the coarse Ricci curvature fails. We define
the target distribution 𝜋 as N (0,𝜎∗2) and set the proposal
distribution as 𝑚𝑥 = N (𝑥,𝜎2). In addition, we put an
assumption that 𝜎 < 𝜎∗, which facilitates our analysis of
the quantity (1).

4.1.1 Analysis of 𝜔 := sup𝑥∈R
Met
𝑊 (𝑥)

In this example, we can evaluate
Met
𝑊 (𝑥) analytically and

Figure 1 is its plot. The fact 𝜔 < 1 and Theorem 3.1

図 1. plot of
Met
𝑊 (𝑥) (𝑥 > 0)

indicates that RWM achieves the exponential convergence.
4.1.2 Analysis of the coarse Ricci curvature

For the coarse Ricci curvature, we can prove
lim𝑥→∞ (1− 𝜅(𝑥,−𝑥)) = 0. As Figure 2 indicates, this
fact can be confirmed through numerical experiments too.

As a result, we can not apply Proposition 2.4.

図 2. plot of 1− 𝜅(𝑥,−𝑥)

4.2 Example 2. (MALA and HMC)
We define the target distribution 𝜋 as 𝜋 = N (0,1).

In HMC, two parameters are necessary for discretizing
Hamilton’s equation by LeapFrog integration: the time
step width 𝜖 and the number of LeapFrog integrations 𝑁 .
Figure 3 compares values of the proposed quantity among
HMC with different 𝑁 (Here, 𝜖𝑁 is fixed). We highlight
that HMC with 𝑁 = 1 is equivalent to MALA. Figure 3
shows that HMC attains faster convergence than MALA

since sup𝑥

Met
𝑊 (𝑥) of HMC (𝑁 > 1) is smaller than that of

MALA (𝑁 = 1).

図 3. comparison of
Met
𝑊 (𝑥) of HMC with different 𝑁

Other examples and the extension of the proposed quan-
tity from R to other sample spaces will be discussed in the
presentation.
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