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1 Introduction

The quantification of convergence rates of MCMC is
a critical issue. There are two principal metrics in this
literature: the total variation distance and the Wasser-
stein distance. While the convergence rate in the total
variation distance has been intensively studied (e.g., [2]),
there is much room for developing the convergence rate
analysis in the Wasserstein distance, particularly for the
Metropolis-Hastings algorithm, which is one of the most
widely used classes of MCMC including random-walk
Metropolis (RWM), Gibbs sampler, Metropolis Adjusted
Langevin Algorithm (MALA), and Hamiltonian Monte
Carlo (HMCQ).

In this thesis, we consider target distributions defined
on R and analyze the convergence rates of various MCMC
algorithms (mainly Metropolis-Hastings) in 1-Wasserstein
distance by proposing a new quantity. The proposal can
be understood as an improved variant of the coarse Ricci
curvature, which is a representative quantity for deriving

convergence rates in the Wasserstein distance [1].

2 Preliminaries

We let (X,d) denote a Polish space and B(X) be the
Borel o-algebra over X. We first state the definition of

the 1-Wasserstein distance.

Definition 2.1. For probability distributions v| and v, on
X, the 1-Wasserstein distance between them, W1 (vy,v3),
is defined as

inf

Wi(vi,v2) =
£ell(vy.vy)

/ d(x.y)E(dr.dy),
(x,y)eXxX

where I1(vy,v2) denotes the set of couplings of vi and v.

In the special case where X =R and d is the Euclidean
distance, we can express the distance explicitly using cu-

mulative distribution functions.

Theorem 2.2. Let vi and v, be probability distributions

(BaR IR HR)

on R. Then, the following holds:

Wl(Vl,Vz)=/]R [:d(vl—Vz)

This property of 1-Wasserstein distance plays signifi-

dx.

cantly important role in this thesis.
As previously noted, the coarse Ricci curvature pro-
posed by [1] can quantify the convergence rate w.r.t. Wj.

Its definition is as follows.

Definition 2.3. Ler x,y € X be two distinct points. The
coarse Ricci curvature of a transition kernel {my}yex

along (xy), k(x,y), is defined as

Wl (mx’ my)
d(x,y)

The coarse Ricci curvature is related to the convergence

k(x,y):=1-

rate as the following proposition states (See [1, Corollary

21] for its proof):

Proposition 2.4. For a transition kernel {my} cx, if
Kk :=inf(x yyexxx k(x,y) > 0 holds, then {my}xex has a
unique stationary distribution. Moreover, the convergence

rate of {my } xex is O((1—«)") for any initial distribution.

3 The proposed variant

Let {my}xer be the transition kernel of a Markov
chain on R. In addition, for each x € R, we let Fy
denote the cumulative distribution function of m,, i.e.,
Fy(z) := f_zoo my (s)ds for z € R. We introduce the follow-

ing quantity for Markov chains on R:

W(x) := [:

This is the proposed variant of the coarse Ricci curvature.

oF

8xx (2)

dz (1)

The following theorem asserts that if sup, .p W(x) < 1,
then sup . .r W(x) directly determines the convergence rate
of the Markov chain.

Theorem 3.1. Suppose that Fy(z) is differentiable w.r.t.
x for each z. In addition, assume that limy_,, Fy(2) is a

constant which is independent of z. If w :=sup, g W(x) <
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1, then the convergence rate of the Markov chain with

respect to 1-Wasserstein distance is given by O (w").

Next, we state a result which relates our proposed quan-

tity W(x) to the coarse Ricci curvature.

Theorem 3.2. If there exists some g,: R — R such that
ngx(Z)dZ < oo and M < gx(z) forall z €R,
then lime_o(1 — k(x,x+€)) = W(x) holds.

Under the assumption in Theorem 3.2, sup, .z W(x) <
1 —inf (, y)er2 k(x,y) holds, and thus the proposal is en-
sured to derive tighter convergence rates than the coarse

Ricci curvature.

4 Examples of the proposed quantity

As notation, we let I\I/)I[st(x) denote the proposed quantity
of a Markov chain with the Metropolis test.
4.1 Example 1. (random walk Metropolis)

We give an example where the proposed quantity (1) can
derive a convergence rate of the random walk Metropolis
(RWM) while the coarse Ricci curvature fails. We define
the target distribution 7 as (0,*?) and set the proposal
distribution as m, = A (x,0%). In addition, we put an
assumption that o < o, which facilitates our analysis of
the quantity (1).
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Analysis of w :=sup, .z W (x)
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In this example, we can evaluate W (x) analytically and

Figure 1 is its plot. The fact w < 1 and Theorem 3.1
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1. plot of W (x) (x > 0)

indicates that RWM achieves the exponential convergence.
4.1.2 Analysis of the coarse Ricci curvature

For the coarse Ricci curvature, we can prove
limy (1 —&(x,—x)) = 0. As Figure 2 indicates, this

fact can be confirmed through numerical experiments too.

As a result, we can not apply Proposition 2.4.
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4.2 Example 2. (MALA and HMC)

We define the target distribution 7 as 7 = A(0,1).
In HMC, two parameters are necessary for discretizing
Hamilton’s equation by LeapFrog integration: the time
step width € and the number of LeapFrog integrations N.
Figure 3 compares values of the proposed quantity among
HMC with different N (Here, €N is fixed). We highlight
that HMC with N =1 is equivalent to MALA. Figure 3
shows that HMC attains faster convergence than MALA
since sup, 1\{/Il‘;t(x) of HMC (N > 1) is smaller than that of
MALA (N =1).
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¥ 3. comparison of W (x) of HMC with different N

Other examples and the extension of the proposed quan-
tity from R to other sample spaces will be discussed in the

presentation.
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