Convergence Rate Analysis of Markov Chain Monte Carlo Based on Coarse Ricci Curvature and Its Improved Variant

数理情報学専攻 48-226201 Sho Adachi (足立 勝)

指導教員 Professor Fumiyasu Komaki (駒木 文保 教授)

1 Introduction

The quantification of convergence rates of MCMC is a critical issue. There are two principal metrics in this literature: the total variation distance and the Wasserstein distance. While the convergence rate in the total variation distance has been intensively studied (e.g., [2]), there is much room for developing the convergence rate analysis in the Wasserstein distance, particularly for the Metropolis-Hastings algorithm, which is one of the most widely used classes of MCMC including random-walk Metropolis (RWM), Gibbs sampler, Metropolis Adjusted Langevin Algorithm (MALA), and Hamiltonian Monte Carlo (HMC).

In this thesis, we consider target distributions defined on \mathbb{R} and analyze the convergence rates of various MCMC algorithms (mainly Metropolis-Hastings) in 1-Wasserstein distance by proposing a new quantity. The proposal can be understood as an improved variant of the coarse Ricci curvature, which is a representative quantity for deriving convergence rates in the Wasserstein distance [1].

2 Preliminaries

We let (\mathcal{X}, d) denote a Polish space and $\mathcal{B}(\mathcal{X})$ be the Borel σ -algebra over \mathcal{X} . We first state the definition of the 1-Wasserstein distance.

Definition 2.1. For probability distributions v_1 and v_2 on \mathcal{X} , the 1-Wasserstein distance between them, $W_1(v_1, v_2)$, is defined as

$$W_1(v_1, v_2) := \inf_{\xi \in \Pi(v_1, v_2)} \int_{(x, y) \in \mathcal{X} \times \mathcal{X}} d(x, y) \xi(\mathrm{d}x, \mathrm{d}y),$$

where $\Pi(v_1, v_2)$ denotes the set of couplings of v_1 and v_2 .

In the special case where $\mathcal{X} = \mathbb{R}$ and *d* is the Euclidean distance, we can express the distance explicitly using cumulative distribution functions.

Theorem 2.2. Let v_1 and v_2 be probability distributions

on \mathbb{R} . Then, the following holds:

$$W_1(v_1, v_2) = \int_{\mathbb{R}} \left| \int_{-\infty}^x \mathrm{d}(v_1 - v_2) \right| \mathrm{d}x.$$

This property of 1-Wasserstein distance plays significantly important role in this thesis.

As previously noted, the coarse Ricci curvature proposed by [1] can quantify the convergence rate w.r.t. W_1 . Its definition is as follows.

Definition 2.3. Let $x, y \in \mathcal{X}$ be two distinct points. The coarse Ricci curvature of a transition kernel $\{m_x\}_{x \in \mathcal{X}}$ along (xy), $\kappa(x, y)$, is defined as

$$\kappa(x, y) := 1 - \frac{W_1(m_x, m_y)}{d(x, y)}$$

The coarse Ricci curvature is related to the convergence rate as the following proposition states (See [1, Corollary 21] for its proof):

Proposition 2.4. For a transition kernel $\{m_x\}_{x \in \mathcal{X}}$, if $\kappa := \inf_{(x,y) \in \mathcal{X} \times \mathcal{X}} \kappa(x,y) > 0$ holds, then $\{m_x\}_{x \in \mathcal{X}}$ has a unique stationary distribution. Moreover, the convergence rate of $\{m_x\}_{x \in \mathcal{X}}$ is $O((1-\kappa)^n)$ for any initial distribution.

3 The proposed variant

Let $\{m_x\}_{x\in\mathbb{R}}$ be the transition kernel of a Markov chain on \mathbb{R} . In addition, for each $x \in \mathbb{R}$, we let F_x denote the cumulative distribution function of m_x , i.e., $F_x(z) := \int_{-\infty}^{z} m_x(s) ds$ for $z \in \mathbb{R}$. We introduce the following quantity for Markov chains on \mathbb{R} :

$$W(x) := \int_{-\infty}^{\infty} \left| \frac{\partial F_x}{\partial x}(z) \right| dz \tag{1}$$

This is the proposed variant of the coarse Ricci curvature. The following theorem asserts that if $\sup_{x \in \mathbb{R}} W(x) < 1$, then $\sup_{x \in \mathbb{R}} W(x)$ directly determines the convergence rate of the Markov chain.

Theorem 3.1. Suppose that $F_x(z)$ is differentiable w.r.t. x for each z. In addition, assume that $\lim_{y\to\infty} F_y(z)$ is a constant which is independent of z. If $\omega := \sup_{x \in \mathbb{R}} W(x) < \omega$ 1, then the convergence rate of the Markov chain with respect to 1-Wasserstein distance is given by $O(\omega^n)$.

Next, we state a result which relates our proposed quantity W(x) to the coarse Ricci curvature.

Theorem 3.2. If there exists some $g_x : \mathbb{R} \to \mathbb{R}$ such that $\int_{\mathbb{R}} g_x(z) dz < \infty$ and $\frac{|F_{x+\epsilon}(z) - F_x(z)|}{\epsilon} \le g_x(z)$ for all $z \in \mathbb{R}$, then $\lim_{\epsilon \to 0} (1 - \kappa(x, x + \epsilon)) = W(x)$ holds.

Under the assumption in Theorem 3.2, $\sup_{x \in \mathbb{R}} W(x) \le 1 - \inf_{(x,y) \in \mathbb{R}^2} \kappa(x, y)$ holds, and thus the proposal is ensured to derive tighter convergence rates than the coarse Ricci curvature.

4 Examples of the proposed quantity

As notation, we let $\overset{\text{Met}}{W}(x)$ denote the proposed quantity of a Markov chain with the Metropolis test.

4.1 Example 1. (random walk Metropolis)

We give an example where the proposed quantity (1) can derive a convergence rate of the random walk Metropolis (RWM) while the coarse Ricci curvature fails. We define the target distribution π as $\mathcal{N}(0, \sigma^{*2})$ and set the proposal distribution as $m_x = \mathcal{N}(x, \sigma^2)$. In addition, we put an assumption that $\sigma < \sigma^*$, which facilitates our analysis of the quantity (1).

4.1.1 Analysis of $\omega := \sup_{x \in \mathbb{R}} \overset{\text{Met}}{W}(x)_{\text{Met}}$

In this example, we can evaluate $\overset{\text{Met}}{W}(x)$ analytically and Figure 1 is its plot. The fact $\omega < 1$ and Theorem 3.1

indicates that RWM achieves the exponential convergence.4.1.2 Analysis of the coarse Ricci curvature

For the coarse Ricci curvature, we can prove $\lim_{x\to\infty} (1 - \kappa(x, -x)) = 0$. As Figure 2 indicates, this fact can be confirmed through numerical experiments too.

As a result, we can not apply Proposition 2.4.

 \boxtimes 2. plot of $1 - \kappa(x, -x)$

4.2 Example 2. (MALA and HMC)

We define the target distribution π as $\pi = \mathcal{N}(0, 1)$. In HMC, two parameters are necessary for discretizing Hamilton's equation by LeapFrog integration: the time step width ϵ and the number of LeapFrog integrations N. Figure 3 compares values of the proposed quantity among HMC with different N (Here, ϵN is fixed). We highlight that HMC with N = 1 is equivalent to MALA. Figure 3 shows that HMC attains faster convergence than MALA since $\sup_x W(x)$ of HMC (N > 1) is smaller than that of MALA (N = 1).

 \boxtimes 3. comparison of $\overset{\text{Met}}{W}(x)$ of HMC with different N

Other examples and the extension of the proposed quantity from \mathbb{R} to other sample spaces will be discussed in the presentation.

参考文献

- Y. Ollivier, Ricci curvature of Markov chains on metric spaces, *Journal of Functional Analysis*, 256(3), pp. 810– 864, 2009.
- [2] J. S. Rosenthal, Minorization conditions and convergence rates for Markov chain Monte Carlo, *Journal of the American Statistical Association*, 90, pp. 558–566, 1995.