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1 Introduction

The central pattern generator (CPG) is known as a spinal
neural circuit for biological rhythmic movements such as
locomotion (e.g., walking, flying, swimming) [1]. In bi-
ological studies, CPGs have been known for their prop-
erty of exhibiting stable oscillatory activities by receiving
stationary inputs or tonic drives descending from a part
of the brainstem called the mesencephalic locomotor re-
gion (MLR) [2]. The neural network architecture of CPG
is suggested to be represented by a half-center, which is
composed of reciprocal inhibitions between neurons [3].

To describe the activities of CPG, dynamical system
models have been generally accepted. There are mainly
three types of models: spiking neuron model, firing rate
model, and phase oscillator model. In terms of mathemat-
ical tractability, spiking neuron models are hard to utilize
for they consist of numerous parameters and variables. In
addition, we are also interested in neural activities other
than neural oscillations. The phase oscillator model does
not fit this purpose because it is too abstract and special-
ized to describe interactive oscillators. In this study, we
focus on one of the firing rate model called the Matsuoka
oscillator model [4, 5, 6], which has been widely used as
a CPG model for simulating biological movements and
studying robot control of walking.

2 Model

We attempt to analyze a two-neuron case of the Mat-
suoka oscillator model, as the most simple and fundamen-
tal component of neural oscillations. The model is given
by the following differential equations:

τx
dx1

dt
=−x1 −by1 −a12z2 + s1, (1a)

τy
dy1

dt
=−y1 + z1, (1b)

τx
dx2

dt
=−x2 −by2 −a21z1 + rs1, (1c)

τy
dy2

dt
=−y2 + z2, (1d)

z1 = max(x1,0), (1e)
z2 = max(x2,0), (1f)

where xi is the (so-called) membrane potential or inner
state of the i-th neuron (i = 1,2), yi is the variable of
adaptation or fatigue, zi is the firing rate, si is the constant
input stimulus into the i-th neuron, ai j ≥ 0 is the synap-
tic weight from the i-th to j-th neuron ( j = 1,2; j ̸= i),
b > 0 is the constant determining adaptation intensity, and
τx > 0, τy > 0 are the time constants of xi, yi, respectively.

For symplicity, we suppose

• symmetric synaptic connection a = a12 = a21, and
• fixed value of s1 whereas s2 = rs1.

We attempt to observe bifurcations between oscillations
and steady states through changing the two parameters a
and r = s2/s1, while the other parameters b, τx, τy, and s1
are all fixed.

3 Previous Results and Questions

In the original papers [4, 5], a existence condition of os-
cillatory solutions of the model is derived concerning the
parameters a and r:

a > 1+
τx

τy
, (2a)

a
1+b

< r <
1+b

a
. (2b)

Figure 1(a) shows an oscillation pattern observed when
the condition (2a), (2b) are satisfied. The condition (2a),
(2b) is actually derived as equivalent to the condition
where no stable steady state exists in the phase space. Re-
garding this previous result, however, the following two
points have been remained uncertain;

I. Steady states like Fig. 1(b) outside the oscillation
range (2a), (2b) are not systematically formulized.

II. Bifurcation types between oscillations and steady
states are unclear.

Fig. 1. Solutions of the model (1); xi (dotted line), zi
(solid line), for i = 1 (blue) and i = 2 (red). (a)
Oscillation. (b) Steady state.
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4 Fixed Point

For the first question I, we performed fixed point anal-
ysis of the model (1). We divided the phase space{
X ∈ R4 |X =

[
x1 y1 x2 y2

]}
into four domains A,

B, C, and D, inside which different linear dynamics oc-
curs. We introduced the concept “hidden” fixed point, and
formulized the stabilty and existence of all fixed points
XA, XB, XC, and XD regarding the four linear dynam-
ics, respectively. The result of this analysis is summarized
in Fig. 2, which is the phase diagram of stable fixed points
(steady states) and stable limit cycles (oscilaltions).
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Fig. 2. Phase diagram of the stable fixed points XB,
XC, XD, and stable limit cycles (a)–(d).

5 Bifurcation

5.1 Homoclinic-like bifurcation
According to the fixed point analysis, we can provide a
basis to the second question II. At the boundaries between
stable fixed points and stable limit cycles, there occurs a
variety of bifurcations. We found one peculiar bifurcation
type in this model, namely “homoclinic-like” bifurcation.
This is observed at the borderline ∂Ω2 (or ∂Ω3) on Fig. 2.
In this bifurcation, the stable fixed point X∗

B (X∗
C) which

is hidden in oscillatory states turns into existing, so that
the system state succeeds in converging to it and the os-
cillation orbits disappear.

5.2 New approximation of oscillation period
An additional result concerning oscillation period was
also obtained by the fixed point analysis. Figure 3 plots
the numerical results of oscillation period T (circle) with
respect to various values of a and fixed value r = 1. We
proposed a new approximation curve (solid line) for the
oscillation period T , which is given by

Tnew = 2τy

[
ln

1
δ
− ln(1+b−a)

]
. (3)

This approximation is derived by evaluating the time
spent to approach the hidden fixed points X∗

B and X∗
C in

the linear dynamics. Unlike the previous approximation
curve (dotted line) proposed by [6], the new curve (3) is
well-fitted when a is larger and can express the logarith-
mic divergence of oscillation period in the supreme of a,
where the homoclinic-like bifurcation occurs.
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Fig. 3. Plot of the oscillation period T vs the symmet-
ric synaptic weight a with fixed value r = 1

6 Conclusion

We analyzed the Matsuoka oscillator model as a repre-
sentative model of the spinal neural circuit called CPG.
Through analysis, we succeeded in formulizing the stabil-
ity and existence of fixed points corresponding to steady
states in the model. This formulization was followed by
depicting the bifurcations between oscillations and steady
states, and proposing a new approximation of oscillation
period. The results about bifurcations would lead to pre-
dictions of noise-induced phenomena in the model and
applications to biology or robot control studies regarding
not only rhythmic movements but also transient move-
ments [1].
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