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1 Introduction

CRYSTALS-Kyber (Kyber) [1] belongs to the cat-
egory of lattice-based cryptography, and in particular
a module Learning With Errors (mod-LWE) scheme.
Let Rq be the quotient ring Zq[x]/(x

n + 1). In the
mod-LWE of Kyber, the sample is given of form
(A,b = As+e mod q), where A is chosen uniformly
from Rk×k

q , and s, e ∈ Rk×1
q are again sampled from

some small distribution.
Kyber prescribes the usage of the Number Theo-

retic Transform (NTT) for efficient polynomial mul-
tiplication. Normally the schoolbook multiplication
takes O(n2) time. Via point-wise multiplication of
transformed polynomials NTT(a) and NTT(b), i.e.,
ab = NTT−1(NTT(a) ◦ NTT(b)), multiplication of a
and b can be performed in time O(n log n), where n
is the degree of polynomial a and b.
Power analysis attack is a kind of side-channel

attack (SCA) exploiting the fact that the instanta-
neous power consumption of a cryptographic device
depends on the data it processes and on the operation
it performs. There are two types of power analysis
attack, namely the simple power analysis (SPA) [4]
and correlation power analysis (CPA) [3]. These at-
tacks had been proved to jeopardize the security of
the classical cryptographic field like the unprotected
version of RSA and ECC.
In this thesis, our goal is to combine correlation

power analysis and lattice reduction to fully recover
the secret key of lattice-based cryptographic schemes
that utilize NTT as their intrinsic polynomial multi-
plication method. Our attack consists of two steps:

• First, by exploiting the correlation of Hamming
weight of some intermediates and the power con-
sumption of the decryption process, precisely the
part where we multiply the secret key with ci-
phertext, we can recover some of the coefficients
of the secret key in the NTT domain.

• Secondly, since there will be some ambiguity
about whether the recovered coefficients are in-
deed correct, we sample part of the recovered co-
efficients and construct a lattice problem by Kan-
nan’s embedding method. Then one can recover
the entire secret key by solving the lattice prob-
lem by using lattice reduction algorithms such as
the BKZ algorithm [2].

2 Correlation Power Analysis

Our attack targets the NTT in the decryption pro-
cess of Kyber, with the aim of recovering the victim’s

Fig. 1. The CPA process for recovering ŝ0

secret key ŝ in the NTT domain. To decrypt a mes-
sage the recipient calculates NTT−1(̂s⊤ ◦ û), where û
is the decompressed ciphertext in the NTT domain
and ◦ denotes the pairwise multiplication. The pair-
wise multiplication is operated in the quotient ring
Zq[x]/(x

2 − ζi), where ζi are the primitive roots of
unity of Zq. In such a ring, the product of two poly-
nomials a = a0 + a1x and b = b0 + b1x can be easily
computed as

ab = (a0b0 + a1b1ζi) + (a0b1 + a1b0)x mod q.

Let x and y be two integers in the range [−q+1, q−1],
we refer to the output of x×y by the REDC algorithm
as fqmul(x, y). Then the product r0 + r1x = ab2−16

can be computed as follow:

r0 ← fqmul(a1, b1)

r0 ← fqmul(r0, ζi2
16)

r0 ← fqmul(a0, b0) + r0

r1 ← fqmul(a1, b0)

r1 ← fqmul(a0, b1) + r1.

(1)

The unwanted constant can be dealt with in the in-
verse NTT together when we divide the coefficient by
n, thus no extra multiplications is needed.

Now suppose we want to reveal the coefficients of
secret key (ŝ0, ŝ1) in the NTT domain, notice that
they are point-wisely multiplied by the ciphertext
(û0, û1), then our first chosen intermediate value is
fqmul(ŝ1, û1), i.e. r0 in the first line of equation (1).
The overall process of this step is depicted in Fig. 1.

3 Lattice Attack

NTT and inverse NTT are linear transform, thus we
can describe NTT with a matrix-vector multiplica-
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tion. Let M = [m0,m2, ...,m254] be the inverse NTT
matrix. M is a 128 × 128 matrix since there are 7
layers in the NTT of Kyber. Suppose we have re-
covered 2(128 − ℓ) coefficients of ŝ from the polyno-
mial multiplication ŝ ◦ û, i.e., we need to recover the
rest 2ℓ coefficients. Notice that the coefficients of in-
dices 2i and 2i + 1 are either recovered or rejected
simultaneously. Now we focus on the coefficients of
indices 2i. Let A = {a0, a1, ..., a127−ℓ} be the indices
that are successfully recovered in the CPA step, and
B = {b0, b1, ..., bℓ−1} be the indices that are still un-
known, then the inverse NTT NTT−1(̂s) = Mŝ = s
mod q can be split into two halves as followed:

MAŝA +MB ŝB = s mod q,

where MA := [ma0
, ...,ma127−ℓ

] is a matrix whose
columns are those of M whose indices are in A, ŝA =
[ŝa0 , ..., ŝa127−ℓ

]⊤, and the similar definition for MB

and ŝB . Notice that s is an extremely short vector
since it is the secret key sampled from βη. By calling
the known vector t = [mi]i∈A[ŝi]

⊤
i∈A, the known basis

Ā = −MB , and an unknown vector s′ = [ŝj ]
⊤
j∈B ,

we now have t = Ās′ + s mod q, which is exactly
the definition of an LWE problem. Compared to the
original mod-LWE problem in Kyber, this problem
becomes simpler since the rank of Ā is less than the
original one.
We use the standard technique of Kannan’s em-

bedding to solve the LWE problem. We can treat the
LWE problem as an uSVP by a technique called Kan-
nan’s embedding. Given the LWE instance above, we
consider the following basis matrix

BKan =

 Il A′
0

0 qIn−ℓ

t⊤ 1

 .

where [Iℓ | A′] denotes the reduced row echelon
matrix of Ā⊤, which can be easily calculated by
Gaussian elimination.
To determine the least number of coefficients we

must recover in the CPA step, we conduct an ex-
periment on solving the SVP randomly generated by
script. The result is shown in Fig. 2, where the
blue line is the success rate of finding [s⊤ | 1] by
the BKZ algorithm of block size 50 for 20 randomly
generated s, and the red line is the running time of
the algorithm. From the result, the critical point of
guaranteed success is on ℓ = 89, ℓ = 90 for Kyber512,
Kyber768/1024, respectively. This means that in the
CPA step, we need at least 128 − 89 = 39 recovered
coefficients for Kyber512, or 38 for Kyber768/1024,
so that we can have a fully recovered secret key when
using the BKZ algorithm of block size 50 to solve
the reduced SVP problem. The reason that Ky-
ber768/1024 is easier to solve is because η of Ky-
ber768/1024 is smaller than that of Kyber512.

Fig. 2. Success rate and running time on ran-
domly generated uSVP in the lattice
BKan for Kyber512 and Kyber768/1024

4 Conclusion

In this thesis, we derived a practical methodology
to combine correlation power analysis and lattice at-
tack that exploited the Number Theoretic Transform
inside some lattice-based cryptosystems. With 200
traces, our attack terminated within 20 minutes on a
16-core computer. Compared to other SCA targeting
NTT in the cryptosystems, our attack achieves lower
runtime in practice. Furthermore, there is potential
for decreasing the number of traces by using lattice
reduction if the same measurement is used.
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