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1 Introduction

Consider a time-invariant linear stable system:

G :

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the
state, input, and output of the system, respectively,
A ∈ Rn×n is a stable matrix, B ∈ Rn×m and C ∈
Rp×n. The Lyapunov equation corresponding to (1)
is as follows:

AX +XA⊤ +BB⊤ = 0. (2)

The system (1) is often found in settings with large
values of n [1]. However, when n is large, the anal-
ysis and design of system (1) requires an enormous
amount of computation and memory storage. In ad-
dition, the fast solution of the Lyapunov equation (2)
is difficult because the computational complexity of
the Bartels-Stewart method, a well-known numerical
solution method, is O(n3).
For large models with n greater than 104, model

reduction using the Krylov subspace method is effec-
tive [1]. The Krylov subspace method is also efficient
for solving the Lyapunov equation [4].
However, the Krylov subspace methods may not

guarantee stability. In addition, the computational
cost of generating the projection is not negligible.
Using the Arnoldi method, the most standard Krylov
subspace method, the computational complexity for
generating the projection is O(nd2).
Based on these considerations, we use random pro-

jection, which has been actively studied in the fields
of statistics and numerical linear algebra in recent
years [6, 5], to reduce the dimension of the system
(1) and the Lyapunov equation (2). The computa-
tional complexity of generating the random matrix
is O(nd). We show that the method based on the
random projection method preserves stability with
high probability, and we analyse the spectral abscissa
between the original and the reduced matrix. Fur-
thermore, we show the error analysis for solving Lya-
punov equation.

2 Preliminaries

In this study, to approximate a d-dimensional iden-
tity matrix, we assume that each component of the
randomised embedding R ∈ Rn×d independently fol-
lows a Gaussian distribution with mean zero and vari-
ance 1

n , and call R ∈ Rn×d a random matrix.

We denote the spectral radius
max{|λ| |λ is an eigenvalue of A} of the general
matrix A by ρ(A), and the spectral abscissa
max{Re(λ) | λ is an eigenvalue of A} by η(A).

3 Dimensionality reduction for stable

matrices

The dimensionality reduction of the matrix A based
on the random projection is performed to reduce the
computational cost of projection generation and to
preserve stability.

Definition 1. A matrix A ∈ Rn×n is called stable,
if all eigenvalues of A are in the open left half of the
complex plane.

Definition 2. A matrix A is called Metzler if all its
off-diagonal elements are non-negative.

Theorem 1. Let A ∈ Rn×n be stable , R ∈ Rn×d be
a random matrix, and d ≪ n. Then, for every 0 <

ϵ̃ < min
{
− 2 trA

n , 2(λmin(A+A⊤)−2 trA)
n

}
, R⊤AR ∈

Rd×d is stable, with probability at least 1 − δ1 − δ2,
where δ1 :=

√
α · 9d exp

(
−α+ 1− ϵ̃

2

)
, δ2 :=

√
α ·

9d exp
(
−2α+ 1

2 − ϵ̃
2

)
,and α := trA

λmin(A+A⊤)
.

Theorem 1 holds with high probability if the value
of α is sufficiently larger than d.

Note that the proof of Theorem 1 is based on [2,
Lemma 3.1]. However, the constant that appears in
the upper bound of the probability concentration in-
equality was not explicitly written in the literature,
although the value is practically important. In this
paper, we clarify the value of upper bound and the
constant for [2, Lemma 3.1].

We then evaluate the error between the largest
eigenvalue of the original matrix and the reduced ma-
trix. We present the result for the case where A is a
stable and Metzler matrix. The stable and Metzler
matrices are used in the study of model reduction
problems [3].

Corollary 1. Let A ∈ Rn×n be a stable
and Metzler matrix, R ∈ Rn×d be a ran-
dom matrix, and d ≪ n. Then, for every

0 < ϵ1 < min
{
− 2 trA

n , 2(λmin(A+A⊤)−2 trA)
n

}
,

every ϵ3 > 0, and every h > 0 such that A+ hIn is a
non-negative matrix, with probability at least (1−δ1−
δ2)

(
1− δ3

(
d,−σmax(A),− trA

n

)
− δ3

(
d, σmin(A), trA

n

))
,

we have

|η(R⊤AR)− η(A)| ≤ trA

n
+ ϵ3 + h− ρ(A+ hIn),
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where δ3 (d, σ, β) := 9d · exp
(
− ϵ3

2

)
·
√

n
n+2σ exp (β).

Figure 1 compares the solution times for 100 ran-
dom matrices and 100 Galerkin projections (matrices
obtained by the Arnoldi method) for each d. Figure
2 compares the eigenvalue distribution for d = 100.

Fig. 1. Computational time to create the projec-
tion

Fig. 2. The eigenvalue distributions of the Met-
zler matrix A

4 Application to Lyapunov equation

We apply the random projection to the solution of
the Lyapunov equation (2). Solving the Lyapunov
equation using the usual Arnoldi method has a com-
putational complexity of O(nd2), while solving it us-
ing a random matrix has a computational complexity
of O(nd).
Let us derive the approximate solution obtained

by the random projection. We define the residual
r by the approximate solution X̃ to the Lyapunov
equation (2) as follows:

r := AX̃ + X̃A⊤ +H.

We also assume that each column of r is almost or-
thogonal to a random d-dimensional subspace. From
R⊤R ≈ Id, we have R⊤rR ≈ 0. If X̃ := RYdR

⊤, we
obtain

R⊤ARYd + YdR
⊤A⊤R+R⊤AR = 0. (3)

Using the solution Yd of (3), we construct the re-

quired solution by X̂ = RYdR
⊤.

Theorem 2. Let A ∈ Rn×n be a stable matrix
and R ∈ Rn×d be a random matrix. Let YRP ∈
Rd×d be the solution of (3) and λmin(YRP ) >
−d

2 . Then, for every ϵ > 0, with proba-

bility at least 1 − δ3
(
n,−λmax(YRP ),− trYRP

n

)
−

δ3
(
n, λmin(YRP ),

trYRP

n

)
, the following claim holds:

∥AXRP +XRPA
⊤ +H∥2F

≤ 2ξ2∥A∥2F + 2ξ2∥A∥F
k∑

i=1

|σi(A)|

+ 4ξ

n∑
i=1

∥Ai∥∥Hi∥+ ∥H∥2F ,

where ξ =
(
ϵ+ trYRP

n

)
, σi(A) is the i-th singular

value of matrix A, Ai ∈ Rn is the i-th row vector
of A, and Hi ∈ Rn is the i-th column vector of H.

5 Conclusion

We used the random projection to reduce the dimen-
sionality of a stable matrix.

Theoretical and numerical results showed that the
reduced matrix with the random projection preserves
the stability of the original matrix A with probability.
Furthermore, we showed that the probability that the
theorems hold changes depending on the properties of
A. In addition, we clarified the value of the constant
that appears in the theorem, and we showed that the
theorem holds with high probability.

A solution method based on the random projec-
tion for the Lyapunov equation was proposed and
an error analysis was performed. Numerical experi-
ments showed that the proposed method reduces the
computational complexity compared to the standard
Krylov subspace method.
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