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Sparse grids capturing exponential decay and smoothness in Besov spaces
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1 Introduction

Many problems in computational science and en-
gineering involve high-dimensional approximations.
Such functions appear when describing complex, non-
linear models and phenomena. In general, approx-
imation of high-dimensional functions with linear
combination of basis functions require a large number
of basis functions. In some cases, the number of basis
functions grows exponentially with respect to dimen-
sion. A method called sparse grid is known as a tech-
nique to mitigate this computational difficulty. The
fundamental idea of sparse grids is to choose a fixed
number of basis functions so that approximation er-
ror becomes as small as possible. Especially, smooth-
ness and decay of functions are important to deter-
mine which basis functions should be used in sparse
grids. In this study, by considering newly defined
functions spaces called exponentially weighted Besov
spaces with dominating smoothness VBS;Z’(]Rd), we
give constructions of sparse grids capturing exponen-
tial decay and smoothness. Specifically, by obtain-
ing wavelet characterization of VBg:"q" (R9), the sparse
grids are obtained.

The motivation to consider sparse grids of this type
is to solve eigenvalue problems of the following Hamil-
ton operator H.
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The Hamilton operator H, appears in the
Schrodinger equation where multiple electrons
interacts. The dimension of this system is 3NV,
where N denotes the number of electrons. Thus, the
dimension of problems are high when the number of
electrons N are large. However, the eigenfunctions
of above Hamilton operator H are known to have ex-
ponential decay and dominating mixed smoothness.
There are rooms to improve complexity of eigenvalue
problems of H by considering sparse grids capturing
exponential decay and smoothness.

2 Exponentially weighted Besov spaces with
dominating smoothness V' B (R?)

Besov spaces VBSW(R?), which are newly de-
fined in this study, is an extension of normal Besov
space B3 (R%) and Besov space with mixed smooth-

WIBERPEY 48216214 /NEREBL
fegwe HAPE—BR BT

ness MBj (R?). VBJ(R?) is a weighted space
whose weight function w increases or decreases ex-
ponentially at most, and has flexibility in smooth-
ness. Hspecially, this flexibility includes smooth-
ness of By ,(R?), MB5 (R?) and their interpolations.
Definitions of these two Besov spaces are given by the
following quasinorms.
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where {¢;}jen, and {®j}jcne are dyadic resolu-
tions of unity, and ¢;(D) = F~'¢;F and ®;(D) =
F~1®;F (F is Fourier transform). Real numbers s in
B ,(R?) and 5 in M Bj  (R?) are smoothness param-
eters, and control the convergence rate of LP-norm of
frequency components. These parameters are gener-
alized by using norms § on N¢ instead. Exponen-
tially weighted Besov spaces with dominating mixed
smoothness V B¥(R?) are defined by the following
quasinorms.
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Note that, unlike quasinorms of non-weighted Besov
spaces (2) and (3) , weighted LP-norms are used in
(4). Furthermore, in (4), the dyadic resolution of
unity can not be used to define VBJ(R), thus dif-
ferent test functions {W¥; }]eNd are used The reason
for this is technical. For more details, see our paper.

3 Wavelet characterization of V Bo"(R?)
and construction of sparse grids

Wavelet is a collection of orthogonal functions
{¥5,m}jend meze which are derived from scaling and
translation of only two functions. A function f €
VBS;Z’(Rd) allow an expansion by wavelets.
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where JA; ;, are real numbers and coefficients of 95 .
Note that quasinorms of H f|VB‘S w(RY) H are charac-
terized by {)\j’m}jeNg’mezd. Under certain assump-
tions, we prove the following relations(Theorem 3 in
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Section 4.1).
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whre A and B are some positive constants, and X5
is an indicator function on Q; , = [m/27, (m+1)/27].
This relation is called wavelet characterization of
VBSY(R%). Sparse grids on VBj.:*(R%), which can
capture exponential decay and mixed smoothness of
function, can be easily derived from wavelet charac-
terization of VBg:Z’(Rd). Consider an approximation
of f by the following finite wavelet expansion.
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where finite M 7 are non-empty so that summation in
the left side is a finite summation. An approximation
error of (5) can be estimated by wavelet characteri-
zation, i.e.,
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Sparse grids, a collection of sets {M:};cna, are ob-
tained by minimizing approximation error in (6).
Figure 1 shows an example of obtained sparse grids
when dimension is 2.

4 Numerical Experiments

Consider the following problem to find minimum
eigenvalue of H

HY = Enin v

where FE;, is a minimum eigenvalue, ¥ is a cor-
responding eigenfunctrion and H is 1-dimensional
Hamiltonian defined by
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Where Aa_aTiJ—i——i—m andd =1. In

this numerical experiments, we use sparse grids by
setting 61 = 0, 62(j) = 0j[1 + |jloc and p =2 in (6).

These choices are due to the regularity results in [1].
Results of numerical experiments are shown in figure
2. Minimum eigenvalue problems are solved when
N = 2,4,6. The results show we obtain asymptotic
convergence of minimum eigenvalue F,;, when N =
2,4, but we can not reach asymptotic convergence
when N = 6 with number of basis functions around
two hundred thousand.
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X 1. Plots of center of wavelets in 2 dimension
2when w(z) = €"/?I"I1 b/p = 4, 6(-) =
0.25| - |1 4 0.75] - |oo, 61(-) =0
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B 2. Results of eigenvalue of problems of H.
AFE/E is an absolute value of difference
of successive eigenvalue over previous mini-
mum eigenvalue.
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