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1 Introduction

Many problems in computational science and en-
gineering involve high-dimensional approximations.
Such functions appear when describing complex, non-
linear models and phenomena. In general, approx-
imation of high-dimensional functions with linear
combination of basis functions require a large number
of basis functions. In some cases, the number of basis
functions grows exponentially with respect to dimen-
sion. A method called sparse grid is known as a tech-
nique to mitigate this computational difficulty. The
fundamental idea of sparse grids is to choose a fixed
number of basis functions so that approximation er-
ror becomes as small as possible. Especially, smooth-
ness and decay of functions are important to deter-
mine which basis functions should be used in sparse
grids. In this study, by considering newly defined
functions spaces called exponentially weighted Besov
spaces with dominating smoothness V Bδ,w

p,q (Rd), we
give constructions of sparse grids capturing exponen-
tial decay and smoothness. Specifically, by obtain-
ing wavelet characterization of V Bδ,w

p,q (Rd), the sparse
grids are obtained.
The motivation to consider sparse grids of this type

is to solve eigenvalue problems of the following Hamil-
ton operator H.

H := −1

2

N∑
α=1

∆i −
N∑

α=1

K∑
ν=1

Zν

|xi − aν |

+
1

2

N∑
α,β=1α ̸=β

1

|xi − xj |
. (1)

The Hamilton operator H, appears in the
Schrödinger equation where multiple electrons
interacts. The dimension of this system is 3N ,
where N denotes the number of electrons. Thus, the
dimension of problems are high when the number of
electrons N are large. However, the eigenfunctions
of above Hamilton operator H are known to have ex-
ponential decay and dominating mixed smoothness.
There are rooms to improve complexity of eigenvalue
problems of H by considering sparse grids capturing
exponential decay and smoothness.

2 Exponentially weighted Besov spaces with
dominating smoothness V Bδ,w

p,q (Rd)

Besov spaces V Bδ,w
p,q (Rd), which are newly de-

fined in this study, is an extension of normal Besov
space Bs

p,q(Rd) and Besov space with mixed smooth-

ness MBs̄
p,q(Rd). V Bδ,w

p,q (Rd) is a weighted space
whose weight function w increases or decreases ex-
ponentially at most, and has flexibility in smooth-
ness. Especially, this flexibility includes smooth-
ness of Bs

p,q(Rd),MBs̄
p,q(Rd) and their interpolations.

Definitions of these two Besov spaces are given by the
following quasinorms.

∥∥f ∣∣Bs
p,q(Rd)

∥∥ :=

 ∞∑
j=0

2sjq||ϕj(D)f ||qLp

1/q

(2)

∥∥f ∣∣MBs̄
p,q(Rd)

∥∥ :=

∑
j̄∈Nd

0

2s̄·j̄q||Φj̄(D)f ||qLp

1/q

(3)
where {ϕj}j∈N0

and {Φj̄}j̄∈Nd
0

are dyadic resolu-

tions of unity, and ϕj(D) = F−1ϕjF and Φj̄(D) =

F−1Φj̄F (F is Fourier transform). Real numbers s in

Bs
p,q(Rd) and s̄ inMBs̄

p,q(Rd) are smoothness param-
eters, and control the convergence rate of Lp-norm of
frequency components. These parameters are gener-
alized by using norms δ on Nd

0 instead. Exponen-
tially weighted Besov spaces with dominating mixed
smoothness V Bδ,w

p,q (Rd) are defined by the following
quasinorms.

∥∥f ∣∣V Bδ,w
p,q (Rd)

∥∥ :=

 ∞∑
j=0

2δ(j̄)q∥Ψj̄ ∗ f∥
q
Lw

p

1/q

.

(4)
Note that, unlike quasinorms of non-weighted Besov
spaces (2) and (3) , weighted Lp-norms are used in
(4). Furthermore, in (4), the dyadic resolution of
unity can not be used to define V Bδ,w

p,q (Rd), thus dif-
ferent test functions {Ψj̄}j̄∈Nd

0
are used. The reason

for this is technical. For more details, see our paper.

3 Wavelet characterization of V Bδ,w
p,q (Rd)

and construction of sparse grids

Wavelet is a collection of orthogonal functions
{ψj̄,m̄}j̄∈Nd

0 ,m̄∈Zd which are derived from scaling and

translation of only two functions. A function f ∈
V Bδ,w

p,q (Rd) allow an expansion by wavelets.

f(x) =
∑
j̄∈Nd

0

∑
m̄∈Zd

λj̄,m̄ψj̄,m̄(x)

where λj̄,m̄ are real numbers and coefficients of ψj̄,m̄.

Note that quasinorms of
∥∥f |V Bδ,w

p,q (Rd)
∥∥ are charac-

terized by {λj̄,m̄}j̄∈Nd
0 ,m̄∈Zd . Under certain assump-

tions, we prove the following relations(Theorem 3 in
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Section 4.1).

A∥f∥V Bδ,w
p,q

≤

∑
j⃗∈Nd

0

2δ(⃗j)q

∥∥∥∥∥∥
∑
m̄∈Zd

λj̄,m̄χj̄,m̄

∥∥∥∥∥∥
q

Lp
w

1/q

≤ B∥f∥V Bδ,w
p,q

whre A and B are some positive constants, and χj⃗,m⃗

is an indicator function on Qj̄,m̄ = [m̄/2j̄ , (m̄+1̄)/2j̄ ].
This relation is called wavelet characterization of
V Bδ,w

p,q (Rd). Sparse grids on V Bδ1,w
p,q (Rd), which can

capture exponential decay and mixed smoothness of
function, can be easily derived from wavelet charac-
terization of V Bδ,w

p,q (Rd). Consider an approximation
of f by the following finite wavelet expansion.

f ≈
∑
j̄∈Nd

0

∑
m̄∈Mj̄

λj⃗,m̄ψj̄,m̄ (5)

where finite Mj⃗ are non-empty so that summation in

the left side is a finite summation. An approximation
error of (5) can be estimated by wavelet characteri-
zation, i.e.,∥∥∥∥∥∥f −

∑
j̄∈Nd

0

∑
m̄∈Mj̄

λj⃗,m⃗ψj̄,m̄

∥∥∥∥∥∥
V B

δ1,1
p,q

≲ max
j̄∈Nd

0

2−(δ2(j̄)−δ1(j̄)) max
m̄∈Zd\Mj̄

(
|Qj⃗,m̄|
w(Qj̄,m̄)

)1/p


×∥f∥
V B

δ2,w
p,q

. (6)

Sparse grids, a collection of sets {Mj⃗}j̄∈Nd
0
, are ob-

tained by minimizing approximation error in (6).
Figure 1 shows an example of obtained sparse grids
when dimension is 2.

4 Numerical Experiments

Consider the following problem to find minimum
eigenvalue of H

HΨ = EminΨ

where Emin is a minimum eigenvalue, Ψ is a cor-
responding eigenfunctrion and H is 1-dimensional
Hamiltonian defined by

H = −1

2

N∑
α=1

∆α −
N∑

α=1

K∑
ν=1

Zν |xα − aν |

−1

2

N∑
α,β=1α ̸=β

|xi − xj |

where ∆α = ∂2

∂x2
α,1

+ · · · + ∂2

∂x2
α,d′

and d′ = 1. In

this numerical experiments, we use sparse grids by
setting δ1 = 0, δ2(j̄) = θ|j̄|1 + |j̄|∞ and p = 2 in (6).

These choices are due to the regularity results in [1].
Results of numerical experiments are shown in figure
2. Minimum eigenvalue problems are solved when
N = 2, 4, 6. The results show we obtain asymptotic
convergence of minimum eigenvalue Emin when N =
2, 4, but we can not reach asymptotic convergence
when N = 6 with number of basis functions around
two hundred thousand.

図 1. Plots of center of wavelets in 2 dimension
2when w(x) = eb/p|x|1 , b/p = 4, δ2(·) =
0.25| · |1 + 0.75| · |∞, δ1(·) = 0

図 2. Results of eigenvalue of problems of H.
∆E/E is an absolute value of difference
of successive eigenvalue over previous mini-
mum eigenvalue.
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