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1 Introduction

Sinkhorn [5] introduced the matrix scaling prob-

lem, that is, given a nonnegative matrix A to de-

termine whether there are positive diagonal matrices

X,Y such that XAY is doubly stochastic or approx-

imately doubly stochastic. This problem has many

applications, such as the existence of perfect match-

ing in a bipartite graph, polynomial identity testing,

and so on. Gurvits [3] generalized this problem to the

operator scaling problem, which is applied to the non-

commutative polynomial identity testing, the Bras-

camp–Lieb inequalities, and so on.

These two problems are special cases of a clas-

sic problem arising from the invariant theory. Let

(π, V ) be an action of an algebraic group G, that is,

π(g) ∈ GL(V ) for any g ∈ G, where V is a vector

space. The problem is to determine whether 0 is in

the orbit closure π(G)v of v ∈ V , called the null cone

membership. Besides above scaling problems, the

tensor scaling problem, Horn’s problem, and many

other problems, are concrete cases of the null cone

membership. This problem has another view. For

any such action and nonzero v ∈ V , there is the

Kempf-Ness function fv : G → R. 0 is not in the

orbit closure v if and only if fv is bounded below,

and if and only if 0 is in ∇fv(G), the closure of the

image of the gradient. Therefore, it is related to some

optimization problem.

2 Previous Research and This Work

For a complex reductive algebraic group G acting

on a complex vector space V , Bürgisser et al. [2]

transformed this problem into optimizing the Kempf-

Ness function fv(g) := log ‖π(g)v‖
2
. Moreover, let

K = G∩U(n) be a maximal compact subgroup of G,

then the norm ‖·‖ on V is K-invariant. Therefore,

fv is defined on G/K, which has a standard Rieman-

nian structure. The null cone membership is related

to an optimization problem on a Riemannian mani-

fold. They also showed fv is geodesically convex and

L-smooth for some L > 0. If 0 is not in the orbit

closure of v, then clearly fv,inf := inf fv > −∞. The

norm minimization problem is to find g ∈ G such

that fv(g) is closed to fv,inf and the scaling prob-

lem is to find g ∈ G such that ∇fv(g) is closed to 0.

They applied the first order and second order algo-

rithms to optimize fv to consider these two problems.

Because of the smoothness and convexity of fv, the

iteration complexity of these algorithms has an ex-

plicit formula. Furthermore, for some special cases,

they showed these algorithms can be applied to solve

the null cone membership.

This work is an extension of [2]. We consider

the above problems for real reductive Lie group ac-

tions and extend some of the results in [2] to the

real case without considering the complex structure.

Let G ⊂ G(n,R) be a real reductive Lie group

and K = G ∩ O(n), the orthogonal group. Then

P ≃ G/K, where P = G∩P (n), the set of all positive

definite matrices. For any action of G on V , there is

also an inner product 〈·, ·〉 that isK-invariant. There-

fore, we define the Kempf-Ness function fv : P → R.

Then the norm minization problem is to minimize fv

on P . Moreover, we equip P with the standard Rie-

mannian structure. The scaling problem is to mini-

mize the gradient ∇fv on P .

Contributions and Results:

(1) fv defined on P is geodesically convex and L-

smooth for L > 0.

(2) Because of the smoothness of fv, applying the

Riemannian gradient descent (RGD) algorithm

to fv solves the scaling problem.

(3) By extending the result in the complex case [2],

fv(x)− fv,inf > C ‖∇fv(x)‖x ,

the RGD algorithm solves the norm minimiza-

tion problem.

(4) We also analyze a general scaling problem on P

by employing the results in [4].
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3 Optimization on Riemannian Manifold

Let (π, V ) be an action of real reductive Lie group

G and P = G∩P (n). Defining the Kempf-Ness func-

tion fv(x) = log〈v, π(x)v〉 for any x ∈ P .

Theorem 1. fv is geodesically convex on P .

Given ε > 0 and v ∈ V such that fv,inf > −∞,

• Scaling Problem: find xs ∈ P , such that

‖∇fv(xs)‖xs

< ε.

• Norm Minimization Problem: find xn ∈ P , such

that
fv(xn)− fv,inf < ε.

These problems are related to optimizing fv on P.

We apply the RGD algorithm to fv, that is, let

x0 = I and updating x1, · · · , xT by

xt+1 = x
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and then returning xs such at ‖∇fv(xs)‖xs

attaches

the minimum of all ‖∇fv(xt)‖xt

. In order to find an

appropriate T and η in RGD, we extend the definition

of weight norm N(π) in [2] to the real case and prove

the smoothness of fv.

Theorem 2. fv is N(π)2-smooth, that is,

∣

∣

∣

∣

d2

dt2
f
(

x
1

2 etXx
1

2

)

∣

∣

∣

∣

6 N(π)2 ‖X‖
2
F ,

for any x ∈ P and any matrix X such that eX ∈ P .

Therefore, for any ε > 0, by setting

η =
1

N(π)2
, T >

2N(π)2

ε2

(

log ‖v‖
2
− fv,inf

)

in the RGD algorithm, it returns xs such that

‖∇fv(xs)‖xs

< ε by [1].

For the norm minimization problem, we find a re-

lation between fv(x) − fv,inf and ‖∇fv(x)‖x, which

is an extension of the complex case [2]. We define a

parameter γ(π), called the weight margin.

Theorem 3. It holds that

fv(x)− fv,inf > log

(

1−
‖∇fv(x)‖x

γ(π)

)−1

.

Therefore, for any 0 < ε < log 2, if ‖∇fv(x)‖x is

less than 1
2γ(π)ε, then fv(x)− fv,inf < ε.

For any nonzero v ∈ V , defining µ(v) = ∇fv(I),

called the moment map. The moment polytope is

∆(v) :=
{

s (µ(w)) : w ∈ π(G) · v
}

,

where s (µ(w)) = diag (λ1, · · · , λn) with λ1 > · · · >

λn and all λi are eigenvalues of µ(w). Let p ∈ ∆(v).

The p-scaling problem is to find g ∈ G such that

‖s (µ(π(g)v))− p‖F < ε. Hirai [4] showed fv + bp is

bounded below for p ∈ ∆(v), where bp is the Buse-

mann function defined on P . They also showed

‖∇(fv + bp)(x)‖x =
∥

∥

∥
µ(π(x

1

2 )v)− ks(X)kT
∥

∥

∥

F
,

where x
1

2 = bk is the RQ decomposition. Therefore,

optimizing fv + bp can solve the p-scaling problem.

4 Conlusions

This work optimized the Kempf-Ness function by

the RGD algorithm. This method solves the scaling

problem and the norm minimization problem of real

reductive Lie group actions, because of the smooth-

ness of the Kempf-Ness function. The p-scaling prob-

lem can also be viewed as an optimization problem

by applying the Busemann function.
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