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1 Introduction

There have been various kinds of non-convex prob-
lems in the real-world applications, but many of the-
oretical studies focus on proving convergence to sta-
tionary points. Meanwhile, gradient Langevin dy-
namics (GLD) and its variants have been used as
a framework to provide global convergence guaran-
tees under non-convex settings recently. The stud-
ies on GLD started from unconstrained convex prob-
lems and expanded to convex constrained non-convex
problems very recently. This work proposes reflected
gradient Langevin dynamics (RGLD) as an optimiza-
tion algorithm for non-convex constrained problems
and analyzes convergence rate to ϵ-sampling error.
The obtained rate improves upon the previous work
on convex constrained non-convex problems (see Ta-
ble 1).
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Table 1: The iteration complexity of GLD to con-
verge to the target distribution. Õ is the order ig-
noring polylogarithmic factors. conv and non-conv
stand for convex and non-convex respectively.

2 Problem Formulation

We solve the following (generally) non-convex prob-
lems over a domain K ⊂ Rd defined by

min
x∈Rd

f(x)

s.t. x ∈ K.

2.1 Assumptions
The assumptions imposed on K and f are made here
to state the convergence rate.

Assumption 2.1 (Projection-Friendliness). Projec-
tion onto K is efficiently computable by some oracle.

The proposed algorithm includes reflection step,
which is why K needs to be projection-friendly.

Assumption 2.2 (Interior Sphere Condition). K ⊂
Rd is a possibly non-convex open domain (hence con-
nected) such that 0 ∈ K and, as a consequence, K
contains a Euclidean ball of radius r(> 0).

This assumption is necessary to guarantee the
uniqueness of the invariant density of the reflected
diffusion discussed in the following, which is a key
component of global optimization of RGLD.

Assumption 2.3 (Smoothness of Boundary). ∂K ∈
C4.

Assumption 2.3 is a relatively strict condition be-
cause constrained problems may have multiple con-
straints and, thus, have several indifferentiable ex-
treme points. Meanwhile, there are some examples
which satisfy the assumption above, for instance,
thick-walled sphere, Riemannian manifold such as
Stiefel manifold and Grassmann manifold. lq norm
(q < 1) constraint is one of the most popular non-
convex constraint for sparse estimation but it violates
Assumption 2.3 at the points with zero elements.

Assumption 2.4 (Bounded Domain). K is bounded,
that is, K is included by the sphere of radius R cen-
tered at the origin.

Assumption 2.5 (Smoothness of Objective Func-
tion). f is C4 function and ∇f is accessible by some
oracle.

From these assumptions, we can conclude that f
and ∇f are bounded. Moreover, M -smoothness is
also easily established.

Proposition 2.6. Under Assumptions 2.4 and 2.5,
f is M -smooth, that is,

∥∇f(x)−∇f(y)∥ ≤ M∥x− y∥.

Finally, the existence of the optimal solution is as-
sumed.

Assumption 2.7. The above problem admits at least
one optimal solution x∗ ∈ K.
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2.2 Proposed Optimization Algorithm: RGLD
We propose reflected gradient Langevin dynamics
(RGLD) as an optimization algorithm updated by

Xk+1 = RK

(
Xk − η∇f(Xk) +

√
2η

β
ξk+1

)
where η and β are step size and inverse temperature
parameter respectively, and ξk is i.i.d. Rademacher
random variables in Rd. RK is reflection operator
to keep the trajectory inside the feasible region K,
defined by RK(x) = 2PK(x) − x where PK(x) =
argminy∈K ∥y − x∥.

3 Main Theorem

In this work, we derive a convergence rate of RGLD to
ensure small expected excess risk of the constrained
problem, that is,

E [f(Xk)]−min
x∈K

f(x) ≤ ϵ+ Cβ ,

where Xk is the solution found in the k-th iteration
by RGLD and Cβ is some constant depending on a
hyperparameter of RGLD and the dimensionality of
the problem. More technically, we analyze the con-
vergence rate to ϵ-sampling error of the target distri-
bution, that is,

E [f(Xk)]− Eπf ≤ ϵ,

where Eπ denotes taking expectation with respect to
the target distribution π.
To state the main theorem, we also define [n] =

{0, 1, . . . , n − 1}. Then, the following notation is in-
troduced for simplicity of arguments on convergence
rate.

Definition 3.1.

f ⪯ g ≜ ∃ C > 0, f ≤ Cg,

f ∼ g ≜ f ⪯ g ∧ f ⪰ g.

Now we state our main theorem.

Theorem 3.2 (Main Theorem). For any ϵ ⪯ 1, by
setting the inputs of algorithm as

β ⪰ 1,

η ⪯ min

{
λ2
∗ϵ

2

β3
,
λ∗ϵ√
βd

}
,
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3
,

√
βd
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2

}
,

we have

E
[
min
k∈[N ]

f(Xk)

]
−min f ≤ ϵ+

d log β

β
.

The proof is deferred to our thesis.

4 Conclusion

In this work, we prove sub-linear rate convergence
of RGLD under constrained non-convex problems.
Additionally, the obtained rate is sharper than that
of [3]. However, the order of the spectral gap re-
mains to be specified because the smallest eigenvalue
problems with Neumann boundary conditions have
not been studied well. Moreover, the smoothness as-
sumption on the boundary of the domain is essential
in the analysis but it is not satisfied in many ap-
plications. The future works will relax the assump-
tions to more general unbounded non-smooth con-
straints. One promising approach is to assume dissi-
pativity condition, as imposed in [4, 5]. We are also
curious about the theoretical relationships with mir-
rored Langevin dynamics and Riemannian Langevin
dynamics as solvers for constrained optimization.
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