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Abstract—In this thesis, we proposed an algorithm based
on augmented Lagrangian method combined with proximal
alternating minimization approach for optimizing problems with
nonnegative and orthogonality constraints. We proved that the
algorithm generates at least one convergent subsequence. It is also
proved that the subsolver algorithm finds a critical point with
a given arbitrary tolerance. Finally, we conduct the numerical
experiment and show the performance with a comparison of the
existing Riemannian Optimization method.

Index Terms—nonnegative orthogonality constraints, aug-
mented Lagrangian method, nonlinear optimization

I. INTRODUCTION

We consider nonconvex optimization problems with orthog-
onality and nonnegative constraints:

min
X∈Rn×m

Tr(XTHX)+Tr(KTX) s.t. XTX = Im, Xi,j ≥ 0,

where 1 ≤ m ≤ n, Im is the m-by-m identity matrix, H ∈
Rn×n is a symmetric matrix and K ∈ Rn×m is a rectangular
matrix.

A wide variety of applications of this problem arises in var-
ious field, e.g. sparse principal componenet analysis (SPCA)
[1], orthogonal nonnegative matrix factorization (ONMF) [2],
etc. This thesis proposed a new augmented Lagrangian based
algorithm with proximal alternating minimization (PAM) [3]
as its subsolver.

II. ALGORITHM

Algorithm 1, performing as the outer iteration, minimizes
the augmented Lagrangian by utilizing the augmented La-
grangian framework [4]–[6], which updates (X,U, V ),Λ1,Λ2

and ρ alternately. While Algorithm 2 is the inner iteration
which specifically computes the (Xk, Uk, V k) for each k-th
outer iteration based on the proximal alternating minimization
method [3].

A. Augmented Lagrangian Scheme (Outer Iteration)

By splitting the constraints into multiple variables, we
express the augmented Lagrangian of the original problem as:

L(X,U, V,Λ1,Λ2; ρ)

:= Tr
(
X>HX

)
+ Tr

(
K>X

)
+ 〈Λ1, U −X〉+

ρ

2
‖U −X‖2F

+ 〈Λ2, V −X〉+
ρ

2
‖V −X‖2F + δSn×m(U) + δRn×m

+
(V )

where
Sn×m :=

{
X ∈ Rn×m : X>X = Im

}
,

Rn×m
+ :=

{
X ∈ Rn×m : Xi,j ≥ 0

}
,

and δS(X) is the indicator function defined by

δS(X) =

{
0 if X ∈ S,
+∞ otherwise.

Algorithm 1 is our proposed method.

Algorithm 1 Augmented Lagrangian Scheme
Input: Set k ← 1 and (X1, U1, V 1) to be an arbitrary initial

point.
Output: Sequence (Xk, Uk, V k).
1: Compute (Xk, Uk, V k) such that Φk ∈
∂L(Xk, Uk, V k, Λ̄1

k
, Λ̄2

k
, ρ), satisfying∥∥Φk

∥∥
∞ ≤ ε

k,
(
Uk

)>
Uk = Im, V k ≥ 0. (1)

2: Estimate multiplier

(Λk+1
1 ,Λk+1

2 ) = ([Λ̄k
1 ]+ρk[Uk−Xk], [Λ̄k

2 ]+ρk[Vk−Xk])

where Λ̄k+1
p is the projection of Λk+1

p on{
Λp : Λ̄p,min ≤ Λp ≤ Λ̄p,max

}
p = 1, 2.

3: Update ρ

ρk+1 :=


ρk , if

∥∥(Uk −Xk)
∥∥
∞ ≤ τ

∥∥(Uk−1 −Xk−1)
∥∥
∞

and
∥∥(V k −Xk)

∥∥
∞ ≤ τ

∥∥(V k−1 −Xk−1)
∥∥
∞

γρk , otherwise
(2)

4: Set k ← k + 1, go to Step 1.

B. Proximal Alternating Minimization Scheme (Inner Itera-
tion)

During each k-th outer iteration, Step 2 of Algorithm 1
can be solved by applying Algorithm 2 based on the PAM
algorithm [3].

III. CONVERGENCE ANALYSIS

A. Convergence Analysis of Inner Iteration

In this thesis, we proved that Algorithm 2 has global
convergence under certain assumption of initial parameters,
given in Proposition 1.



Algorithm 2 Proximal Alternating Minimization Scheme
Input:

Set j ← 1. For k = 1, set (X1,0, U1,0, V 1,0) to be an
arbitrary initial point. For k ≥ 2, set (Xk,0, Uk,0, V k,0)←
(Xk−1, Uk−1, V k−1)

Output:
(Xk, Uk, V k) that satisfies the constraint in Step 2 of
Algorithm 1.

1: while ||Φk,j ||∞ > εk do
2: Compute

Xk,j = A−1(Λ̄k
1 + Λ̄k

2 + ρkUk,j−1

+ ρkV k,j−1 + ck,j−11 Xk,j−1 −K)

where A := Ak,j−1 = 2H +
(

2ρk + ck,j−11

)
In

3: Compute V k,j
p,q =

{
Ṽ k,j
p,q ,where Ṽ k,j

p,q ≥ 0
0 , otherwise.

}
,

where

Ṽ k,j =
−Λ̄k

2 + ρkXk,j + ck,j−12 V k,j−1

ρk + ck,j−12

4: Compute Uk,j = PIn×mQ
>, where the matrices P,Q

are obtained from the SVD of

ρkXk,j + ck,j−13 Uk,j−1 − Λ̄k
1 =: PΣQ>.

5: Set (Xk, Uk, V k) ← (Xk,j , Uk,j , V k,j), Φk ← Φk,j

and j ← j + 1.
6: end while

Proposition 1. Assume the parameters γ and ρ1 are initialized
such that

γ > 1, ρ1 > 0, ρ1In + 2H � 0,

then (Xk,j , Uk,j , V k,j) generated by Algorithm 2 con-
verges to a critical point (X̄k, Ūk, V̄ k) and the sequence
(Xk,j , Uk,j , V k,j) has a finite length. Moreover,

||Φk,j ||∞ → 0 as j →∞.

B. Convergence Analysis of Outer Iteration
In this thesis, we proved that the sequence (Xk, Uk, V k)

generated by Algorithm 1 is bounded. That is, there exists a
subsequence converging to a limit point.

IV. NUMERICAL EXPERIMENT

We compare the performance of the proposed method and
the Riemannian augmented Lagrangian method (RALM) [7]
on the orthogonal nonnegative matrix approximation problem
on matrices of 3 sizes. The results are shown as follows.

TABLE I
EXPERIMENT 1. RALM VS. THE PROPOSED METHOD ON 100× 10

RANDOM MATRIX

RALM the Proposed Method
Objective Function Residual 314.7610 285.4391
Nonnegativity (≥ −1e−5) 968 1000
Orthogonality 5.7334e-16 2.5832e-4

TABLE II
EXPERIMENT 2. RALM VS. THE PROPOSED METHOD ON 1000× 10

RANDOM MATRIX

RALM the Proposed Method
Objective Function Residual 3256 3161
Nonnegativity (≥ −1e−5) 8290 10000
Orthogonality 1.1002e-15 3.8132e-4

TABLE III
EXPERIMENT 3. RALM VS. THE PROPOSED METHOD ON 1000× 100

RANDOM MATRIX

RALM the Proposed Method
Objective Function Residual 33092 32788
Nonnegativity (≥ −1e−5) 98088 100000
Orthogonality 3.3228e-15 3.8657e-4

Fig. 1. shows that the proposed method has better perfor-
mance on residual.

Fig. 1. Residual on the first 150 iterations for problem min
X∈Rn×m

‖X−X0‖2F ,

s.t. X>X = In and X ≥ 0, where (n,m) = (1000, 10).
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