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1 Cooperative Games

The cooperative game theory, whose history goes

back to the seminal work of von Neumann and Mor-

genstern [13], treats the situation in which the players

can gain larger profits by cooperating to each other.

The main conceptual problem of cooperative game

theory is to find a “good way”, referred to as a so-

lution concept, to distribute the value to the players

when all players cooperate.

From computational aspect, researchers are inter-

ested in algorithms related to the concepts of “good

ways”. This is the one of the main interests of com-

putational cooperative game theory [3].

Let us formulate cooperative game mathematically.

A cooperative game (V, ν) is given by a finite set V

and a function ν : 2V → R with ν(∅) = 0, where

V is the set of n players and ν is the characteristic

function such that ν(X) indicates the value if players

X ⊆ V form a coalition.

One of the most famous solution concepts is the

Shapley value [9], which is explicitly defined by the

formula∑
X⊆V \{v}

|X|!(|V | − |X| − 1)!

|V |!
(ν(X ∪ {v})− ν(X)). (1)

and represent the fair distribution.

A convex game [10] is a class of games with several

desirable properties. Formally, a cooperative game

is convex if its characteristic function ν : 2V → R is

supermodular, i.e., the following inequality holds for

all X,Y ⊆ V [6]:

ν(X) + ν(Y ) ≤ ν(X ∩ Y ) + ν(X ∪ Y ). (2)

2 Optimization Problem Games

The research of optimization problem games is

started by Shapley and Shubik [10], who defined the

assignment game. In this line of research, researchers

treat games such that ν(X) is defined by the optimal

value of a combinatorial optimization problem on the

substructure X. In this thesis, we consider the fol-

lowing two games.

Hypergraph Matching Game [4, 5] Let G = (V,E) be

a hypergraph and c : E → R>0 be a weight function.

The player set of this game is V and ν(X) is given by

the maximum weight of the hypergraph matching of

G[X]. Here, the hypergraph matching is a subset M

of hyperedges such that each vertex in V is contained

in at most one hyperedge of M .

b-matching Game [2, 11] Let G = (V,E) be a graph,

b : V → Z>0 be a budget function and c : E → R>0

be a weight function. The player set of this game is

V and ν(X) is given by the maximum weight of the

b-matching of G[X]. Here, a b-matching of G[X] is a

vector x ∈ ZE
≥0 such that∑
e is incident to v

x(e) ≤ b(v) (3)

holds for all v ∈ X.

Several research investigate the convexity in op-

timization problem games. The polynomial-time

checkable characterization is known for matroid mini-

mum base game [8], minimum spanning tree game [7],

and minimum coloring game and minimum vertex

cover game. It is investigated the structure of

the convex hypergraph matching game [4], although

polynomial-time characterization is not given.

3 Our Contribution

In this thesis, we investigate computational prob-

lems and structures related to the convexity of the hy-

pergraph matching game and the b-matching game.

Our main contribution is a polynomial-time algo-

rithm to solve the following problems.

Problem 1. Given a hypergraph matching game, de-
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termine it is convex or not.

Problem 2. Given a b-matching game, determine it

is convex or not.

For the both games, we establish a necessary and

sufficient condition of the convexity and construct an

algorithm for checking the condition efficiently.

For the hypergraph matching game, we prove that

it is sufficient to check polynomial number of super-

modular inequalities (2) to check the convexity of the

game. To prove this, we use a structural lemma on

“essential” hyperedges. For the b-matching game,

we can state much about its structure for the con-

vex case. Specifically, we show that the whole graph

should be the comparability graph of a branching.

Computing the Shapley value already #P-hard to

calculate for a matching game [1], which is a common

case of the hypergraph matching game and the b-

matching game. Here, we restrict the instance into

convex games and give polynomial-time algorithms

to the following problems.

Problem 3. Given a convex hypergraph matching

game, compute the Shapley value.

Problem 4. Given a convex b-matching game, com-

pute the Shapley value.

The algorithms heavily depend on our characteri-

zations of the convexity. For both games,we observe

that the marginal gain, ν(X∪{v})−ν(X), takes poly-

nomial number of different values. For each value, we

count the number of the pair (X, v) with that value of

marginal gain. For the hypergraph matching game,

this number is computed by the double-counting ar-

gument with the Möbius inversion formula [12]. For

the b-matching game, we explicitly write this number

using the branching that defines the whole graph.

Since the fractional relaxation of the matching

problems define different problems, they define differ-

ent games. However, we prove that, in convex case

they coincide; the fractional versions are convex if

and only if the corresponding integral versions are

convex.

Because the convexity is a strong condition, most

instances of the hypergraph matching game are non-

convex. Therefore, we consider modifying the game

by compensating the vertices not in the matching to

make the game convex.

Problem 5. Given a hypergraph matching game,

compute the minimum total compensation to make

the game convex.

We prove that this problem is NP-hard in general

and admits a 2-approximation algorithm if the whole

graph is an antichain.
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