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Fig. 1. Three-layer structures of cryptography.

1 Introduction

After Shor proposed a quantum algorithm for com-
puting prime factorization and discrete logarithm in
polynomial time, quantum computers are believed to
have the potential to attack public key cryptosystems
based on these mathematical problems, such as RSA
cryptography and elliptic-curve cryptography.
In last few years, with the rapid development of

quantum computers, the National Institute of Stan-
dards and Technology (NIST) started a project to
standardize the next-generation cryptography called
the post-quantum cryptography (PQC).
Currently, lattice-based cryptographic schemes

become one of the most promising candidates for the
PQC, and has received a remarkable amount of at-
tention. The security of lattice-based cryptography is
mainly based on the difficulty of learning with er-
rors (LWE) problem proposed by Regev [Reg05],
and is eventually based on the hardness of shortest
vector problem (SVP). Figure 1 shows the security
structures of RSA cryptography and lattice-based
cryptography. Since the SVP is in NP-class [Ajt97],
the lattice-based cryptography is believed to be se-
cure against quantum attacks.
Therefore, for the purpose of analyzing the security

of lattice-based cryptography, estimating the com-
putational cost of the LWE problem and its
related problems becomes an indispensable topic.

2 Preliminary

2.1 LWE Problem
The LWE problem is defined under the number of
samples m, the dimension n, the standard deviation
σ and the modulus q.
Let Zq denote the ring of integers modulo q and

let χσ denote a distribution on Zq with mean 0 and
standard deviation σ. As Figure 2 shows, an LWE
problem will keep the secret vector s and the error
vector e as secrets, and asks us to recover the secret

Fig. 2. Learning with Errors (LWE) Problem.

vector s from a random matrix A and a vector c
defined as c := As+ e mod q.

We call the problem with secret vectors sampled
from Zn

q the standard LWE problem. Recently,
for efficient implementations, several lattice-based
schemes with special distributions of secret vectors.
Unlike the standard LWE problem, the binary LWE
problem samples the secret vectors from {0, 1}n.
2.2 Solving LWE Problem
Embedding techniques, which reduce the LWE prob-
lem to a unique shortest vector problem (uSVP), are
believed to be efficient methods to solve the LWE
problem.

Kannan’s [Kan87] and Bai-Galbraith’s [BG14] em-
bedding techniques are usually applied for solving the
standard LWE problem and the binary LWE prob-
lem, respectively. The uSVP in the lattice with basis
constructed by embedding techniques can be solved
using the BKZ-β algorithm [Sch87], where β is a pa-
rameter positively correlated with its complexity. In
this paper, we mainly study the reduction step.

3 Our Motivation and Contribution

As we claim, several lattice-based schemes are based
on the LWE problem with special distributions in-
stead of standard and binary LWE problems. How-
ever, for the LWE problem, the previous studies have
not been generalized to consider all cases. Another
fact is that some LWE-based cryptographic schemes,
especially key exchange schemes, is constructed by
the LWE problem with limited number of samples.
In 2017, Bindel et al. [Bin+17] study this case.

Compared with previous works, our interest is to
provide more general estimation of the hard-
ness of LWE. For this purpose, we define the gen-
eralized LWE problem which extend the definition of
LWE problem into two aspects. First, the generalized
LWE problem samples secret vectors from arbitrary
distributions. This extension includes standard and
binary settings. Second, we also consider the restric-
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Fig. 3. The lattice basis constructed by half-
twisted embedding

tion of the number of LWE samples. Therefore, our
work provides a more general estimation of the hard-
ness of LWE.
To solve the generalized LWE problem, we propose

the half-twisted embedding that combines Kan-
nan’s and Bai-Galbraith’s embeddings with a half-
twisted factor nT. Figure 3 shows the construction of
our half-twisted embedding.
The proposed embedding enable us to analyze the

LWE problem in a generic manner by solving the gen-
eralized LWE problem. Moreover, it is worth dis-
cussing whether the intermediate state of the com-
bined embedding improves the attack. Then, we an-
alyze the half-twisted embedding by using the Alkim
et al.’s estimate [Alk+16], and give our hardness es-
timation of the generalized LWE problem. We also
proof that our half-twisted embedding provides an
improved reduction under certain parameters.
Finally, we provide sufficient practical results to

testify our theoretical study. These results are shown
in Figure 4. The horizontal and vertical axes rep-
resent the number of samples and the best block-
size β to choose, respectively. We write “estimates”
for parameters estimated by Alkim et al.’ estimate,
and “experiments” for parameters found by experi-
ments. The red area represents benefits from the half-
twisted embedding. Although there exists a small
gap between numerical and experimental results, the
trend of blocksizes change is consistent to our anal-
ysis. These results make our half-twisted embedding
an important improvement for estimating the secu-
rity of LWE-based cryptographic schemes.

4 Conclusion

In this paper, we first give an analysis on the LWE
problem in a generic manner by using the generalized
LWE problem and our proposed half-twisted embed-
ding technique. We find that the half-twisted embed-
ding provides an improved attack on the LWE prob-
lems under some certain parameters, which means
the proposed method gives a better security estimate

Fig. 4. Experimental result.

on LWE-based cryptographic schemes.
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