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1 Introduction

Echo state networks (ESNs) are powerful computing
systems in predictions of time series [1]. However,
the mechanism of the computational ability and the
memory capacity of the ESN has not been fully clari-
fied. In this thesis, we investigate how the structures
of the ESN, including the activation function and the
connection weights, influence its performance. In or-
der to reveal the mechanism of the ESN in predict-
ing time series, we compute the Jacobian matrix of
the ESN system with respect to the past input sig-
nals, and analyze the relationship between the Jaco-
bian matrix and the structures of the ESN. We find
that it is the eigenvalue distribution of the recurrent
connection matrix that determines the dynamical be-
havior of the ESN. Based on this result we propose a
new method to design the recurrent connection ma-
trix which shows better performance than that in the
standard ESN.

2 Echo State Network

The dynamics of the ESN is described by:

x[t] = Cr[t−1] +Winpu[t] +Wfeedz[t−1],

r[t] = f(x[t]),

z[t] = Woutr[t],

(1)

where x[t] is the internal state at time t, and u[t] and
z[t] are the input and output signals at time t, respec-
tively. C represents the recurrent connection weights
(inside the reservoir). The matrices Winp, Wout

andWfeed represent the input, readout and feedback
connections weights of the ESN, respectively, and f
denotes the activation function which is element-wise
in this formula. We only train the readout connec-
tion weights Wout of the ESN. The other connection
weights are initialized randomly (Gaussian distribu-
tion is commonly used) and remained unchanged.
Therefore the initialization method for other connec-
tions is of great importance. In this study, we in-
vestigate how the structure, such as the activation
function f and the recurrent connection weights C,
influences the computational performance of ESNs.

3 Relationship between Structure and

Performance in ESNs

3.1 Relationship between Feedback Connections and
Long Term Memory

In the analysis of the role of feedback connections, we
used the three-bit-flip-flop (TBFF) task as an exam-

ple. TBFF task has three input channels and output
channels. The input signals are given by sequences
of pulses with irregular intervals. The peak value of
all pulses is 1 or −1. This task requires the output
to be 1 or −1, and to have the same sign as that of
the most recent input pulse of the same channel.

Fig. 1. PCs of ESNs with feedback connections[2]
and those without feedback connections

To investigate the role of the feedback connections
in TBFF tasks, we trained two ESNs with and with-
out the feedback connections on the TBFF task. And
compared the first three principle components (PCs)
of the reservoir states of these two ESNs. The result
is shown in Fig. 1. With the feedback connections,
the ESN can perform the TBFF task. There are eight
attractors in the dynamics of the ESN. When the out-
put state was changed by the input pulse, the state of
the reservoir jumped from one attractor to another,
which is the origin of the long term memory. With-
out feedback connections, there is only one attrac-
tor. When there is a pulse of the input, the state of
the reservoir will be pushed away, and soon fall into
the attractor as the input pulse vanishes as shown in
Fig. 1. The color denotes the channel of the input,
and the values of three channels compose the RGB
space of the color. From this result, we can draw the
conclusion that feedback connections are important
in the formation of the long term memory of the ESN.
3.2 Relationship between Recurrent Connections and

Short Term Memory
The echo state property means that the influence of
the past input signals gradually vanishes. Mathemat-
ically this means that the derivative of the state x[t]

with respect to the past input signal u[t−m] converges
to 0 as m increases. This can be regarded as the ori-
gin of the short term memory of the ESN. The value
of the derivative is naturally included in the Jaco-
bian matrix of the ESN. With the chain rule, we can
compute the Jacobian matrix as follows:

∂z[t]

∂u[t−m]
=

(
Wout

)T
F[t]CF[t−1]C · · ·F[t−m]CWinp,

(2)
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where F[t] is an n × n diagonal matrix with the i-

th diagonal term f
′
(x

[t]
i ). We find that F[t] can be

regarded as constant signals with random perturba-
tions if the scale of the input is small. Therefore we
can make the approximation F[t] ≈ Fa, and for a hy-
perbolic tangent or sigmoid activation function, Fa

approximately equals to the identity matrix multi-
plied by a constant. With the eigen-decomposition
of FaC, we can obtain the relationship between the
eigenvalues of FaC and the short term memory. Es-
pecially for the k time delay task, which requires the
ESN to output the time series value k time steps be-
fore the current time, we can compute the optimal
readout weights as follows:

Woptimal =
1

M (λλT )
k

[
1 λk

1 λk
2 · · · λk

n

]T
,

(3)
where λ = [λ1, λ2, · · · , λn] is a vector of eigenvalues
of FaC, and n denotes the reservoir size and M is a
variable which depends on the max value of λ, which

satisfies (max(λ))
M ̸= 0 and (max(λ))

M+1
= 0. The

matrix Woptimal is the optimal value of W which is a
linear transform of the readout weights Wout. When
k is large, which means the required memory for this
task is large, we can expect that the term λλT is
neither rapidly expanding nor contracting.
3.3 The Effect of Activation Function on Computa-

tional Ability of ESN
We used the NARMA task in the analysis of the role
of feedback connections. For a random time series u
as the input signal, the target z is generated from u
with the next recursive formula:

zt = αzt−1 + βzt−1

k∑
i=1

zt−i + γut−kut−1 + δ, (4)

where α, β, γ and δ are constant values, and k in-
dicates the required memory of this task. Eq. (4)
is extremely complicated and therefore the NARMA
tasks can be used to evaluate the computational abil-
ity of the ESN. From Eq. (4) we computed the condi-

Fig. 2. Performance of ESNs with different order
Taylor expansions of the activation func-
tion

tion for the Jacobian matrix, and found that for tasks
whose target time series are generated from a poly-
nomial of degree n, the n-th derivative of the activa-
tion function is required to be non-zero. This can be

proved by the next experiments, where we take the
different order Taylor expansions of the hyperbolic
tangent function as activation functions, and com-
pare the performance of ESNs with these activation
functions. The result is shown in Fig. 2 which shows
that the computational ability of the ESN with the
linear activation function is much worse than those
of nonlinear activation functions.

4 Design Strategy for Echo State Networks

From the result obtained in section 3.2, we see that
the mean value of the non-zero eigenvalues of FaC is
important in the formation of the short term mem-
ory. Since Fa approximately equals to the identity
matrix, we just consider the recurrent matrix C. In
order to adjust the eigenvalue distribution C, we first
generate a diagonal block matrix which is composed
of multiple 2 × 2 matrices with controllable pairs of
eigenvalues. By denoting the radius of each pair by
ri, we can define: r[m] = [rm1 , rm2 , · · · , rmn ], where n
is the reservoir size. Then we can adjust the radius
distribution of the eigenvalues of the recurrent ma-
trix by choosing different m which is shown in Fig. 3
(left). We can also compare the performance of ESNs
with this matrix of different m on the time delay task
(Fig. 3, right).

Fig. 3. Eigenvalue distributions of matrices Wm

generated with r[m] (left). And the perfor-
mance of ESNs with the recurrent matrix
as Wm on the time delay task (right).

From the result we found that when the eigenvalues
are distributed near the edge of the circle (green lines,
with m = 0.0001, 0.001, 0.01, 0.1), the performance is
excellent. When m = 1, the eigenvalue distribution
(bottom right corner in the left figure) is similar to
that of the random matrix (upper left corner in the
left figure), and their performance (red line and blue
line) are both worse than the others.
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