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1 Introduction

In 2001, the spectral clustering theory[l] was developed by
using the spectrum of similarity matrix of the data instances
to perform dimensionality reduction for clustering in fewer
dimensions. Since the appearance of Google’s parallel pro-
gramming framework: Map-Reduce[2] in 2004, more and
more computational intensive algorithms have been imple-
mented with this framework.[3] As most of our computations
involved applying a map function to each logical instances
from the input and then applying a reduce function to all the
values calculated by the map function to derive the results,
the map-reduce framework enables automatic parallelization
and distribution of large scale computations.

Our object is to present a spectral k-means algorithm
using a sparse approximated similarity matrix instead of the
original dense one and implement it with the map-reduce
framework on Hadoop[4]. This implementation will allow
user cluster large datasets on a multiple node system. We
induct several document clustering experiments on two large
datasets to evaluate our implementation.

2 Algorithm and Implementation

Given a dataset with n data instances x1,xs,...,z,. in it.
Every instance is supposed to be a d-dimensional real vector,
a clustering algorithm then groups all the data instances into
k clusters.

The spectral k-means presented and implemented in this
thesis is composed of three components: similarity matrix
constructor, eigensolver and standard k-means.

e similarity Matrix Constructor:
1. Calculate the Euclidean distance between (z;,z;)
as v — .
2. Retain the smallest ¢ distances of each instance to
form a sparse matrix F.
3. Symmetricalize E to E’

4. Calculate S’ by

/

S = eap(—5-0) m
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where o; is the average distance of instance x;
5. Calculate D by

Dy => 8 (2)
j=1

6. Calculate L by

L=1-D"Y28'D~1/? (3)

This component is implemented with the map-reduce
framework by assign n/p instances to each node of a
p-node system. Thus each node will be responsible to
its n/p rows of the sparse distance matrix F by cal-
culating its n/p instances’ ¢t nearest neighbours, sym-
metricalize to form n/p rows of E’, calculate n/p rows
of L by three separate map-reduce phrases.

eigensolver

1. Calculate L ’s smallest k eigenvalues and find out
the corresponding eigenvectors.

2. Form a n * k matrix V by lining the eigenvectors
up.

3. Normalize V to U by

‘/7;.
o

The eigensolver implemented here is based on Wukong’s
fast eigensolver which is developed by using the Arnoldi
method[5] for sparse matrices calculations. Wukong
is an open source library developed using map-reduce
framework for Hadoop.

Uij = ;i=1.n,j =1.k. (4)



e standard k-means.

1. Regard U as n k-dimensional instances: w1, us, ..
. Generate k centroids ¢y, ca, ..., Ck.-
. Assign instances to their nearest centroids.
. Obtain the mean value of each cluster’s instances.
. Update centroids with the mean values.
. Repeat 3-5 until ¢; remain the same.
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After the initialization of generating the centroids, we
still let each node take the responsibility of every n/p
instances. We use a map function to assign the in-
stances to their nearest centroids and then the updated
centroids will be calculated by a reduce function. This
map-reduce phase executes an iteration as 3-5 repre-
sented above and we will repeat this phase until the
centroids become unchanged.

3 Experiments

As mentioned above, we did several document clustering
experiments to evaluate the performance of our implemen-
tation of this spectral k-means algorithm. The experiments
are conducted on an 8-node system each of which has a
decent duo-core processor. We use two standard datasets
TDT-2 in which 7803 documents are grouped in 56 clus-
ters and RCV1 in which 9494 documents are grouped in 51
clusters.

The clustering quality is showed in the Table 1, where the
Dense means NOT using a sparse similarity matrix instead
of the dense one. The results told that our implementation of
the spectral k-means algorithm performed much better clus-
tering accuracies than standard k& means algorithm. Also,
the accuracies are higher than the Dense’s ones proved the
loss of information will not deteriorate the clustering perfor-
mance if an appropriate t is choosed.

Table 1: Cluster Quality

Algorithm H TDT-2 \ RCV1
Our implementation || 0.9384 | 0.8357
Dense 0.7646 | 0.8520
Standard k-means 0.7166 | 0.5997

The clustering speed results are listed in the Table 2. It
showed the implementation can finish the task of clustering
about 10,000 documents in 3 minutes on one node and it
will only take less than 30 seconds if all the 8 nodes are
activated. The speed up rate we obtained are about 2x with
2 nodes, 3.5x with 4 nodes and 6x with 8 nodes which are
implied a relatively high scalability.

oy Uy

Table 2: Cluster Speed (sec)

No. of nodes H TDT-2 ‘ RCV1

1 116 166
2 60 84
4 34 45
8 20 25

4 Conclusion

In this thesis, we have developed a spectral k-means algo-
rithm for clustering large dataset and implemented it with
the map-reduce framework. The most important benefit
given by this algorithm is that we use the sparsification
method by taking ¢ nearest neighbours of the points to ob-
tain the sparse similarity matrix for the purpose of reducing
the usage of memory and the time for constructing similar-
ity matrix. In order to implement this algorithm with the
parallel programming framework: Map-Reduce, we first di-
vided the whole algorithm into three individual components
and then implemented each component with Map-Reduce
framework on Hadoop. Our experiment results showed this
implementation can perform an overall good scalability with
a high clustering quality.
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