Constructions of CCA Secure Public Key Encryption and Attribute Based Encryption (CCA 安全な公開鍵暗号と属性ベース暗号の設計)

数理第一研究室 2 年 山田翔太 指導教員:國廣昇准教授

1 背景

属性ベース暗号は,公開鍵暗号の一般化であり,受信者の集合を細かく指定することができる.本研究では,検証可能性または委譲可能性という性質をもち,IND-CPA 安全性という弱い安全性をもつような属性ベース暗号を IND-CCA 安全性という強い安全性をもつ属性ベース暗号に変換する一般的な変換方法を提案した.

2 準備

本節ではまず関数型暗号定義を行う. 次にその特殊ケースである Ciphertext-policy ABE (CP-ABE) と Key-policy ABE (KP-ABE) の定義を行う.

2.1 関数型暗号

定義 Σ_k と Σ_e をそれぞれ "鍵属性" と "暗号文属性" の空間とし, $R:\ \Sigma_k \times \Sigma_e \to \{0,1\}$ を論理関数 とする.R を用いた関数型暗号は Setup, KeyGen,Encrypt,Decrypt,の4つのアルゴリズム からなる.

Setup $(\lambda, \mathrm{des}) \to (PK, MSK)$: セキュリティパラメータ λ を入力とし,方式の記述 des ,公開鍵 PK,マスター秘密鍵 MSK を出力する.

 $\mathbf{KeyGen}(MSK, PK, X) \to SK_X$: マスター秘密鍵 MSK , 公開鍵 PK , 鍵属性 $X \in \Sigma_k$ を入力とし,X のための秘密鍵 SK_X を出力する.

 $\mathbf{Encrypt}(PK,M,Y) \to CT$: 公開鍵 PK , メッセージ M , 暗号文属性 $Y \in \Sigma_e$ を入力とし , 暗号文 CT を出力する . Y は CT の中に含まれているものと仮定する .

 $\mathbf{Decrypt}(PK,CT,SK_X) \to M \text{ or } \bot$: 公開鍵 PK , 暗号文 CT , 秘密鍵 SK_X を入力とし , メッセージ M , または暗号文が不正であることを示す \bot を出力する .

2.2 属性ベース暗号の定義

定義 1 (KP-ABE). U を属性の空間とする . U の上のアクセス構造の集合 $\mathcal A$ に関する KP-ABE は,論理関数として $R^{\mathsf{KP}}:\mathcal A\times 2^U\to\{0,1\}$ を用いる関数型暗号である.ここで, R^{KP} は, $\omega\in\mathbb A$ であるときに限り $R^{\mathsf{KP}}(\mathbb A,\omega)\mapsto 1$ となる関数であると定義する.

定義 2 (CP-ABE). U を属性の空間とし,U の上のアクセス構造の集合 $\mathcal A$ に関する CP-ABE は,論理関数として $R^{\mathsf{CP}}: 2^U \times \mathcal A \to \{0,1\}$ を用いる関数型暗号である.ここで, R^{CP} は, $\omega \in \mathbb A$ であるときに限り $R^{\mathsf{CP}}(\omega,\mathbb A) \mapsto 1$ となる関数であると定義する.

Table 1: X', Y' と Subroutine の設定の仕方

変換 CP-ABE1	変換 KP-ABE1
検証可能性を持つ CPA CP-ABE ⇒ CCA CP-	検証可能性を持つ CPA KP-ABE⇒ CCA KP-ABE
ABE	
鍵属性 $X' = X$	鍵属性 $X' = X$
暗号文属性 $Y' = Y \lor (\land_{P \in S_{vk}} P)$	暗号文属性 $Y'=Y\cup S_{vk}$
Subroutine	Subroutine
If $\mathbf{Verify}(PK, CT, X, S_{vk}) = 0 \text{ or } \bot$	If $\mathbf{Verify}(PK, CT, X, \wedge_{P \in S_{vk}} P) = 0 \text{ or } \bot$
Return \perp .	Return \perp .
Else Return $\mathbf{Decrypt}(PK, CT, SK_{X'})$.	Else Return $\mathbf{Decrypt}(PK, CT, SK_{X'})$.

変換 CP-ABE2 委譲可能性をもつ CPA CP-ABE ⇒ CCA CP-	変換 KP-ABE2 委譲可能性をもつ CPA KP-ABE ⇒ CCA KP-ABE
ABE	鍵属性 $X'=X$ 暗号文属性 $Y'=Y\cup S_{vk}$
Subroutine Run Delegate $(PK, SK'_X, X \cup W, X \cup S_{vk})$ $\rightarrow SK_{X \cup S_{vk}}.$ Return Decrypt $(PK, CT, SK_{X \cup S_{vk}}).$	Subroutine Run Delegate($PK, SK'_X, X, X \land (\land_{P \in S_{vk}} P)$) $\rightarrow SK_{X \land (\land_{P \in S_{vk}} P)}.$ Return Decrypt($PK, CT, SK_{X \land (\land_{P \in S_{vk}} P)}$).

3 変換方式

属性空間の設定

- Π が小さい属性の空間をもつならば,W は $W=\{P_{1,0},P_{1,1},P_{2,0},P_{2,1},\ldots,P_{\ell,0},P_{\ell,1}\}$ と定義される.ダミー属性の集合 $S_{vk}\subset W$ は $S_{vk}=\{P_{1,vk_1},P_{2,vk_2},\ldots,P_{\ell,vk_\ell}\}$ と定義される.ここで vk_j は vk の j 番目のビットである.
- Π が大きい属性の空間を持つならば , W は $W=\{0,1\}^\ell$ と定義される. ダミー属性の集合 $S_{vk}\subset W$ は $S_{vk}=\{vk\}$ と定義される.

テンプレート 検証可能性または委譲可能性を持つ CPA 安全な関数型暗号 $\Pi=(\mathbf{Setup},\mathbf{KeyGen},\mathbf{Encrypt},\mathbf{Decrypt})$ を用いて,CCA 安全な関数型暗号 $\Pi'=(\mathbf{Setup}',\mathbf{KeyGen}',\mathbf{Encrypt}',\mathbf{Decrypt}')$ を以下のように構成する. $\Sigma=(\mathcal{G},\mathcal{S},\mathcal{V})$ をワンタイム署名とする.

 $\mathbf{Setup}'(\lambda, U)$. $\mathbf{Setup}(\lambda, U \cup W) \to (PK, MSK)$ を実行し, (PK, MSK) を出力する.

 $\mathbf{KeyGen'}(MSK,PK,X)$. $\mathbf{KeyGen}(MSK,PK,X') \to SK_{X'}$ を実行し, $SK_X' = SK_{X'}$ を出力する.

Encrypt'(PK,M,Y) $\mathcal{G}(\lambda) \to (vk,sk)$ を最初に実行する.次に Encrypt $(PK,M,Y') \to CT$ と $\mathcal{S}(sk,CT) \to \sigma$ を実行し, $CT' = (vk,CT,\sigma)$ を出力する.

 $\mathbf{Decrypt'}(PK,CT',SK'_X)$ 最初に,暗号文 CT' を (vk,CT,σ) と分離する.もし $\mathcal{V}(vk,CT,\sigma)=0$ ならば \bot を出力し,そうでないならば Subroutine を実行し,得られた値を出力する.