
Relationship between Arguments and Results
of Recursive Functions

（再帰関数の引数と返値の関係に関する研究）

Akimasa Morihata（森畑 明昌）
Supervisor: Professor Masato Takeichi

1. BACKGROUND
Since computers were invented, they have made remark-

able progress. Their number, power, application, and theory
have grown every year. Along with increasing importance of
computers, the importance of programs, especially correct
and efficient ones, have been increasing. But here we have a
serious dilemma. On one hand, we need to produce involved
programs that are efficient. On the other hand, we need to
produce simple programs to confirm correctness. We cannot
produce correct and efficient programs in naive ways.

To solve this dilemma, calculational programming [2] (or
program calculation) is proposed. In calculational program-
ming, we first construct a correct program that may be ter-
ribly inefficient, and after that we improve its efficiency with
program manipulation technique. The methodology of cal-
culational programming is a guidepost of program construc-
tion; calculational programming gives a global map, while
program manipulation methods work as road signs. Calcu-
lational programming has succeeded in developing various
kinds of programs, and what we need are more road signs
to show a proper route.

2. ASYMMETRY BETWEEN
ARGUMENTS AND RESULTS

In functional programming, arguments (inputs of func-
tions) and results (outputs of functions) are not symmetric.
Things being natural for arguments may not be natural for
results, and vice versa. Here we give three examples of such
asymmetry that are not suitable for program construction
and program manipulation.

(1) Asymmetry of program elements
Usually programs iterate their computations over argu-

ments. For example, the function reverse, which reverses
an input list, is programed as follows.

reverse x = rev x []

where rev [] h = h

rev (a:x) h = rev x (a:h)

The function reverse iterates its auxiliary function rev over
its input list. It is a quite usual description of recursive func-
tions, and many theories and techniques have been intro-
duced to recognize and manipulate such programs [6][7][5].
In contrast, Danvy and Goldberg proposed a program pat-
tern There And Back Again [3] (or in short, TABA) where
programs iterate their computations over its results. For
example, we can program rev_n that is actually reverse of
TABA pattern as follows.

rev_n x = let ([],r) = rev’ x in r

where rev’ [] = (x,[])

rev’ (b:y) = let (a:x’,r’) = rev’ y

in (x’,a:r’)

The function rev_n iterates the computation of rev’ over
its results. Though TABA programs have nothing strange
except for iteration over results, they are interesting but
puzzling. It is not clear that how to recognize, how to use,
how to analyze, and how to manipulate such programs.

(2) Asymmetry of computation dependencies
Usually a program computes its results from its argu-

ments. In contrast, circular programs [1], use their results
as their arguments as follows:

repmin t = let (r,m) = aux t m in r

where

aux (Node l r) m = let (lr, lm) = aux l m

(rr, rm) = aux r m

in (Node lr rr, min lm rm)

aux (Leaf n) m = (Leaf m, n)

where repmin takes a tree and replaces the values of leaves
by the minimum value in the tree. In this program, the
variable m is computed by a function call aux t m where m is
also used as an input of aux. To be precise, the aux computes
its arguments from its results. It is not intuitive, and raises
similar problems with TABA.

(3) Asymmetry of program manipulations:
In many cases, program manipulation methods that nat-

urally fit to results are not directly applicable to arguments
and vice versa. For example, consider the problem of higher-
order removal. It is well known that η-expansion effectively
achieves higher-order removal of results. For the following
function sumH, whose auxiliary function sum’ returns a func-
tion value,

sumH x = let r = sum’ x in r 0

where sum’ [] = id

sum’ (a:x) = \h−>a+(sum’ x h)

η-expansion immediately gives a first-order definition as fol-
lows.

sumH’ x = let r = sum’ x 0 in r

where sum’ [] h = h

sum’ (a:x) h = a+(sum’ x h)

In spite of such an effective use for higher-order removal of
results, η-expansion can do nothing for accumulative argu-
ments that produce function values. For example, it cannot
work for the following sumCP function.



sumCP x = sum’ x id

where sum’ [] r = r 0

sum’ (a:x) r = sum’ x (\h−>a+(r h))

In short, if we define one program transformation, we might
have to prepare two versions, one for arguments and the
other for results.

Such kinds of asymmetry disturb construction and manip-
ulation programs. We have been suffering from them. What
we need is a criterion that will be a guidepost so that we
would not lose our way by these kinds of asymmetry.

3. IO SWAPPING
Here we introduce a novel program transformation called

IO swapping. IO swapping makes a new recursive func-
tion whose call-time computations (computations managed
in arguments) and return-time computations (computations
managed in results) are the return-time computations and
call-time computations of the old one, respectively, yet guar-
antees that the old and new recursive functions compute the
same value.

Theorem 1 (IO swapping).
Assume that g0, g1, g2, and g3 are given functions. Then
the following two functions f1 and f2 are equivalent.

f1 x h0 = let r = f1’ (x, g0 r h0) in r

where

f1’ (x’,h)

= if p x’ then g1 x’ h

else let r = f1’ (k x’, g2 x’ r h)

in g3 x’ r h

f2 x h0 = let ((x’,h),r’) = f2’ (x, g1 x’ h)

in r’

where

f2’ (y,r)

= if p y then ((x, g0 r h0),r)

else

let ((x’,h),r’) = f2’ (k y, g3 x’ r h)

in ((k x’, g2 x’ r h),r’)

Theorem 1 swaps the call-time computations and the return-
time computations of the auxiliary function. In the defini-
tion of the function f1, g3 performs the return-time compu-
tation, but in the definition of the function f2 it does the
call-time computation. In contrast, g2 manages the call-
time computation in the function f1, but under f2 it does
the return-time computation. Actually, we can derive rev_n

above from usual reverse using IO swapping for example.
Now we never suffer from the asymmetry of both program
elements and computation dependencies, because we can ex-
change arguments with results by IO swapping.

IO swapping is easy to be combined with other program
manipulation techniques. Moreover, IO swapping works as
a meta transformation with other program manipulation
techniques. A program manipulation with IO swapping be-
comes a new program manipulation which is IO-swapped
manipulation of the old one. For example, we can derive
a higher-order removal method for accumulative arguments
from η-expansion with IO swapping. This higher-order re-
moval method transforms the sumCP function above into the
following usual first-order definition.

sumCP x = sum’’ x

where sum’’ [] = 0

sum’’ (a:x’) = let v = sum’’ x’

in a+v

Now we do not suffer from the asymmetry of program ma-
nipulations anymore.

4. CONCLUSION
We introduced a novel program transformation namely

IO swapping. It gives symmetry of arguments and results
to recursive functions. With IO swapping, we could sym-
metrize not only program elements or computational de-
pendencies, but also program manipulations. We confirmed
its effectiveness through many examples: We demonstrated
TABA program derivations and manipulations. We derived
higher-order removal of accumulative arguments and fusion
for accumulative programs from these of the results, and
discussed its extension to the case of non-linear recursions.
We proposed a guideline of manipulating circular programs
and clarified the difficulty to manipulate them.

Now we are trying to clarify the relationship between IO
swapping and theories of structural recursions. The theories
of structured recursions are researched in terms of construc-
tive algorithmics [6][4], where programs are abstracted using
the theory of categories in mathematics. The framework of
constructive algorithmics is very powerful so that many pro-
gram transformaton methods are actually described [6][7][5].
But to the best of our knowledge, no research gives a proper
abstraction to accumulative functions, and in fact we have
not succeeded in describing the IO swapping rule in terms
of constructive algorithmics yet.

We also consider that IO swapping is related with synthe-
sis of data structures. IO swapping for structural recursions
on lists produces a new function scanning a list from tail
to head. In other words, it produces a new function that
scans a queue-fashion data structure from ordinary lists it-
erating function. It is known that manipulation of queues
is difficult in purely functional setting. We hope that IO
swapping makes a room for the synthesis of data structures,
for example a synthesis of list-like data structures such as
queues, doubly linked lists, circular lists, etc.

5. REFERENCES
[1] R. Bird. Using circular programs to eliminate multiple

traversals of data. Acta Informatica, 21:239–250, 1984.

[2] R. Bird and O. de Moor. Algebras of Programming.
Prentice Hall, 1996.

[3] O. Danvy and M. Goldberg. There and back again. In
Proceedings of ICFP’02, pages 230–234. 2002.

[4] M. M. Fokkinga. Law and Order in Algorithmics. PhD
thesis, University of Twente, Dept INF. 1992.

[5] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling
calculation eliminates multiple data traversals. In
Proceedings of ICFP’97, pages 164–175. 1997.

[6] E. Meijer, M. Fokkinga, and R. Paterson. Functional
programming with bananas, lenses, envelopes and
barbed wire. In Proceedings of FPCA’91, pages
124–144. 1991.

[7] A. Takano and E. Meijer. Shortcut deforestation in
calculational form. In Proceedings of FPCA’95 pages
306–313. 1995.


