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概要

一般化経験尤度法は分布の汎関数として表されるパ

ラメータを，推定関数を用いてノンパラメトリックに推

定を行うための手法のクラスであり，既存のいくつかの

手法を含むことが知られている．一方，経験尤度法や指

数ティルティング法は，Kullback-Leibler(KL)ダイバー

ジェンスを用いたダイバージェンス最小化法として導か

れる．そこで，本研究では一般化経験尤度法とダイバー

ジェンス最小化法の関係を調べることを一つ目の目的と

する．また，応用上は推定関数として複数の候補が得ら

れていることがある．そこで，次元が最大の不偏性を持

つ推定関数を選ぶという一致性を持つ選択規準を考え，

一般化経験尤度法の枠組みで具体的な選択規準を提案す

ることを本研究の二つ目の目的とする．

1 一般化経験尤度法

xi (i = 1, . . . , n) は独立にある分布 F0 に従う確率変

数 x の観測値であるとし，分布 F0 の汎関数として書

ける p 次元のパラメータ θ0 に興味があるとする．パラ

メータ θ0 と分布 F0 の関係は q 次元推定関数 g(x, θ) を

用いて，E[g(x, θ0)] = 0 と表される．一般化経験尤度法

(Smith [4])は q ≥ pのときに推定関数を用いてノンパラ

メトリックに θ0 を推定する手法で，その推定量は凹関数

ρ(v)を用いて，

θ̃ = arg min
θ

max
λ

1
n

n∑
i=1

ρ(λTg(xi, θ)) (1)

で与えられる．ただし，ρ(v)の定義は v = 0を内点とし

て含む区間であり，適当な微分可能性のもとで ρ(k)(v) :=

∂kρ(v)/∂vk として一般性を失わず，

ρ(0) = 0, ρ(1)(0) = ρ(2)(0) = −1 (2)

であることを仮定する．ρ(v) = log(1 − v), ρ(v) = 1 −
ev, ρ(v) = −v2/2 − v としたとき，それぞれ経験尤度法，

指数ティルティング法，連続更新一般化積率法に一致す

る．適当な仮定のもとで，推定量の漸近的な性質として

次の定理が成り立つ．

定理 1. 　

√
n(θ̃ − θ0)

d→ N(0, V ),
√

n(λ̃ − 0) d→ N(0,W ), (3)

2
n∑

i=1

ρ(λ̃Tg(xi, θ̃))
d→ χ2

q−p (4)

が成り立つ．ただし，

1
n

n∑
i=1

ρ(λ̃Tg(xi, θ̃)) = min
θ

max
λ

1
n

n∑
i=1

ρ(λTg(xi, θ)),

Ω = E
[
g(x, θ0)gT(x, θ0)

]
, G = E

[
∂g(z, θ0)/∂θT

]
,

V = (GTΩ−1G)−1, W = Ω−1 − Ω−1GV GTΩ−1

である．

2 ダイバージェンス最小化法との双対性

一般化経験尤度法をダイバージェンス最小化法の双対

問題として捉える場合，分布の確率の和が 1になるとい

う制約の取り扱いが問題となる．しかし，実は一般化経

験尤度法は確率でない測度まで考察の範囲を拡げたダイ

バージェンス最小化法のラグランジュ双対問題になって

いる．まず，測度 P,Q に対して拡張された f -ダイバー

ジェンスは

D̄(P,Q) =
∫

p(x)f̄(q(x)/p(x))dν(x)

で定義される．ただし，f̄(u) は f̄(1) = f̄(1)(1) = 0 を

満たす凸関数である．拡張された規格化されたダイバー

ジェンス最小化法は，経験分布と同じサポートを持つ測

度を考え，推定関数の不偏性という制約の下で経験分布

からこの測度への拡張された f -ダイバージェンスを最小

化することで得られる．つまり，凸最適化問題

min .
1
n

n∑
i=1

f̄(nwi) s. t.
n∑

i=1

wig(xi, θ) = 0

の最適値を d̄f (θ)として，θ̃ = arg minθ d̄f (θ)を推定量

とする．上の最適化問題のラグランジュ双対問題を考え

1



ると

max . − 1
n

n∑
i=1

f̄∗(λTg(xi, θ))

となる．ただし，f̄∗(v) は f̄(u) の共役関数 f̄∗(v) =

supu{uv − f̄(u)} である．よって，ρ(v) = −f̄∗(v) と

すれば一般化経験尤度法は拡張されたダイバージェンス

最小化法のラグランジュ双対問題になっていることがわ

かる．また，ρ(v)についての規格化条件 (2)は f̄(u)では

f̄(1) = f̄(1)(1) = 0, f̄(2)(1) = 1 (5)

と書ける．前の二つの条件はダイバージェンスであるた

めの条件であった．三つ目の条件は簡単な計算により，

ダイバージェンスによって導かれる計量を Fisher情報量

に一致させるためのものであることを確認できる．とこ

ろで，f -ダイバージェンスの一種である α-ダイバージェ

ンスについて，任意の確率分布 P,Qと任意の cp, cq > 0

について，

D̄(α)(cpP, cqQ) = const. + c
1−α

2
p c

1+α
2

q D(α)(P,Q)

という関係が成り立つので，α-ダイバージェンスの最小

化は確率として規格化されていてもいなくても等価であ

るとわかる．従って，α-ダイバージェンスを用いた場合

は確率分布に対するダイバージェンス最小化法も一般化

経験尤度法に含まれることがわかる．なお，この事実は

一般化経験尤度法と確率分布に対するダイバージェンス

最小化法の一次最適性条件を比べることにより，Newey

and Smith [3]によって示されている．

3 推定関数の選択規準

今，推定関数の候補を {gγ(x, θ) | γ ∈ Γ} とする．た
だし，Γ は有限集合とし，これらの推定関数に対して

E[gγ(x, θ0)] = 0となる θ0 が唯一つ存在するか，あるい

は任意の θに対して E[gγ(x, θ)] 6= 0であるかのどちらか

が成り立つものとする．つまり，E[gγ(x, θ0)] = 0となる

θ0 の値が二つ以上存在する場合は考えないことにする．

gγ(x, θ), (γ ∈ Γ )のうち E[gγ(x, θ0)] = 0となる θ0 が唯

一つ存在する γ の集合を Γ0 とし，Γ0 の要素のうち推定

関数の次元 qγ (≥ p)が最大となる γ の集合をMΓ0 とお

く．ここで，次のような選択規準を考える．

EFSC(γ) = Tn(γ) + h(qγ)κn.

ただし，Tn(γ), h(qγ), κn は次の性質を満たすものと

する．

仮定 2. 　 1. Tn(γ) は xi (i = 1, . . . , n) の統計量であ

り，以下を満たす．(a) γ ∈ Γ0 のとき Tn(γ) = Op(1)で

ある．(b) γ /∈ Γ0 のとき Tn(γ)/n
p→ c > 0 である．2.

h(.)は単調減少である．3. κn = o(n)かつ n → ∞のと
き κn → ∞である．

この選択規準は Andrews [1]が一般化積率法の枠組み

で提案した選択規準を一般化したものである．この選択

規準に対して次の定理が成り立つ．

定理 3. 　 γ̂ = arg minγ∈Γ EFSC(γ) とすると，仮定 2

のもとで，limn→∞ Pr(γ̂ ∈ MΓ0) = 1となる．

ここで，h(qγ)κn としては BIC タイプとして

h(qγ)κn = (p−qγ) log n HQICタイプとして h(qγ)κn =

(p − qγ) log log n などが考えられる．また，Tn(γ)

としては一般化経験尤度法の枠組みでは Tn(γ) =

2
∑

i ρ(λ̃Tg(xi, θ̃)) や Tn(γ) = n||λ̃||2 などが適当な条
件のもとで上の仮定を満たすことが確かめられる．なお，

Tn(γ) = 2
∑

i ρ(λ̃Tg(xi, θ̃)) とした選択規準は Hong et

al. [2] によってすでに提案されていた．

4 結論と今後の課題

一般化経験尤度法は一般の測度にまで考察を拡げたダ

イバージェンス最小化法のラグランジュ双対問題として

表されることを示した．その結果，一般化経験尤度法の

直観的な理解が可能となった．さらに，推定関数として

複数の候補があるとき，どのような推定関数を用いるべ

きかという問題に対して，次元が最大でかつ不偏性を持

つ推定関数を選ぶという一致性を持つ選択規準を与え，

一般化経験尤度法の枠組みで具体的な選択規準を提案し

た．今後の課題としては，有限標本におけるパラメータ

の推定の良さという観点から今回提案した選択規準とは

別の選択規準を提案する必要があると考えられる．
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