
A Fractional Packing Algorithm for Ideal Clutters

46226 Yuji MATSUOKA
Adviser: Satoru Iwata

February 8, 2006

1 Introduction

Many combinatorial optimization problems can be
formulated as integer linear programming problems,
and we have naturally linear programming relaxation
problems for them. In general the optimal value of
the relaxation problem is not equal to that of the
original problem, and it is important to discuss the
case where the equality holds. In clutter theory this
property is characterized as idealness of clutters.

First we consider the clutter of dijoins. It follows
from idealness of the clutter of dijoins that the capac-
ity of a minimum dicut is equal to the total multiplic-
ity of a maximum fractional packing of dijoins, while
Schrijver[4] showed that the capacity of a minimum
dicut is not equal to the total multiplicity of a max-
imum integral packing of dijoins. By applying the
algorithm for a minimum cut proposed by Hao and
Orlin[3], one can find a minimum dicut efficiently, but
this algorithm does not yield a maximum fractional
packing of dijoins. For this problem we give a com-
binatorial polynomial-time algorithm which runs in
time O(max{m2n2,mn3 log(n2/m)}), where n and m
denote the numbers of vertices and arcs, respectively.

Next we discuss the maximum fractional packing
problem for an ideal clutter, which is a generaliza-
tion of fractional packing of dijoins. We have pro-
posed a combinatorial polynomial-time framework to
find an optimal fractional packing. Letting n be the
cardinality of the vertex set of a given clutter, our
framework finds an optimal packing with at most n
edges, performing at most n times minimizations for
a given clutter and at most n2 times minimizations
for its blocker.

2 Fractional Packing of Dijions

2.1 Definitions

Consider a directed graph D = (V,A) with a nonneg-
ative integral capacity function w on arcs, and denote
the cardinality of the vertex set V by n, that of the
arc set A by m. A set of arcs B ⊆ A is called a di-
cut (or a directed cut) if B = δ−(U) for some U with
∅ 6= U (V and δ+(U) = ∅, where δ−(U) (δ+(U)) de-
notes arcs entering (leaving) U . A set of arcs B ⊆ A
is called a dijoin (or a directed cut cover) if it is an
inclusionwise minimal arc set which intersects every
dicut. A packing of dijoins is a family B of dijoins B,

each with a multiplicity γ(B) ∈ R+ such that for any
arc a ∈ A,

∑
{γ(B) | a ∈ B ∈ B} ≤ w(a). The total

multiplicity of B is defined by
∑

{γ(B) |B ∈ B}. An
integral packing has all multiplicities γ(B) integral,
and a fractional packing has γ(B) rational. A max-
imum packing is a packing with the maximum total
multiplicity.

2.2 A Packing Algorithm

We say that for X,Y ⊆ V , X and Y cross if X \ Y ,
Y \ X, X ∩ Y and V \ (X ∪ Y) are all nonempty. A
family of subsets such that no two of them cross is
called cross-free. We have the following lemma for
the cross-free family:

Lemma 2.1. If Φ ⊆ 2V and Φ is cross-free then
|Φ| ≤ 4n − 4.

The main idea of the algorithm is to keep vertex
sets of minimum dicuts found in the algorithm as a
cross-free family Φ, which guides selection of dijoins.
Outline of the algorithm is as follows:

§̈ ¥¦Fractional Packing of Dijoins¶ ³
Step 0: Φ ← ∅.
Step 1: Find a dijoin B with |B ∩ δ−(U)| = 1
for all U ∈ Φ.
Step 2: Compute α(B), and D ← D−α(B)B.
Step 3: If α(B) < β(B), we have a minimum
dicut δ−(S) with |B ∩ δ−(S)| > 1, and perform
Procedure UNCROSS(Φ, B, S).
Step 4： If λ(D) = 0 then stop. Otherwise go
back to Step 1.µ ´
Here we omit how to compute α(B) for a given di-

join B, the detail of Procedure UNCROSS(Φ, B, S),
and proof for validity of the algorithm. For complex-
ity of the algorithm, we have the following theorem:

Theorem 2.2. Our fractional packing algorithm
runs in O(max{m2n2,mn3 log(n2/m)}) time.

Our algorithm has many similarities to an algo-
rithm for fractional packing of arborescences pro-
posed by Gabow and Manu[2], or an algorithm for
T-joins given by Barahona[1].

1

3 Fractional Packing for Ideal
Clutters

3.1 Definitions

A hypergraph C = (V, E) is called a clutter if no two
sets in E are contained in each other. Let C = (V, E)
be a clutter and w be a nonnegative vector on V ,
then consider the pair of linear programming as

primal problem : min{wx |x ≥ 0, M(C)x ≥ 1},

dual problem : max{y1 | y ≥ 0, yM(C) ≤ w},

where M(C) is the matrix whose row vectors are the
characteristic vectors of edges. A clutter C is ideal
if the primal problem has an integral optimal solu-
tion for each nonnegative vector w. The blocker of
C is defined by the clutter b(C) = (V,F), where F is
the collection of all inclusionwise minimal members
of {F ⊆ V | |F ∩ E| ≥ 1, ∀E ∈ E}.

3.2 Packing Problems for Clutters

Consider an ideal clutter C = (V,E(C)) and a non-
negative integral capacities w on vertices. We denote
the cardinality of the vertex set V by n.

The minimum edge problem for a clutter b(C) is de-
fined as min{w(C) |C ∈ E(b(C))}. Since E(b(C)) is
an inclusionwise minimal members of {C ⊆ V | |C ∩
B| ≥ 1 for all B ∈ E(C)}, this problem can be for-
mulated as min{wx |M(C)x ≥ 1, x ∈ Zn

+}. Since
a clutter C is ideal, this problem is equivalent to
min{wx |M(C)x ≥ 1, x ≥ 0}. Its dual problem is
max{y1 | yM(C) ≤ w, y ≥ 0T }, and this corresponds
to the maximum fractional packing problem for C.

3.3 A Packing Algorithm

Idealness of C implies that the total multiplicity of
a maximum fractional packing of edges in E(C) is
equal to the capacity of a minimum edge in E(b(C)).
We denote this value by λ(w). For an edge set Φ ⊆
E(b(C)), we define a face F (Φ) of Q as Q ∩ {yχB =
1 for all B ∈ Φ}∩{y(v) = 0 for all v with w(v) = 0}.

The framework is as follows:

§̈ ¥¦Fractional Packing for Ideal Clutters¶ ³
Step 0: Φ ← ∅.
Step 1: Find an edge B ∈ E(C) such that χB

is a vertex of F (Φ).
Step 2: Compute α(B), and w ← w−α(B)B.
If α(B) < β(B), then we have a minimum edge
S ∈ E(b(C)) with |S ∩ B| > 1 and add S to Φ.
Step 3： If λ(w) = 0 then stop. Otherwise go
back to Step 1.µ ´
How to find a vertex of F (Φ)

Define a new cost c(v) for each v ∈ V as follows:

c(v) =

{
+∞ w(v) = 0
|{C ∈ Φ | v ∈ C}| w(v) > 0

(1)

Find a minimum edge in E(C) with respect to a new
cost function c.

Computation of α(B)
Step 0: α ← β(B) and S ← ∅.
Step 1: While(λ(w − αχB) < λ(D) − α) do:

S ← a minimum edge for w − αχB .
α ← w(S) − λ(w)/|B ∩ S| − 1;

Step 2: Return α and S.

To examine the number of iterations in the algo-
rithm, we have the following lemma:

Lemma 3.1. The dimension of F (Φ) decreases by at
least one at each iteration.

The running time of the algorithm is as follows:

Theorem 3.2. For an ideal clutter C, our frame-
work finds an optimal fractional packing of edges in
E(C), performing at most n minimizations for C and
at most n2 minimizations for b(C).

As a consequence of the algorithm, we have the
following theorem:

Theorem 3.3. For an ideal clutter on a finite set
V , there exists an optimal fractional packing with at
most |V | edges.

4 Conclusion

We have presented a combinatorial polynomial-time
algorithm for fractinal packing of dijoins, which runs
in time O(max{m2n2,mn3 log(n2/m)}). Next we
deal with the maximum fractional packing problem
for an ideal clutter, which is a natural generalization
of fractional packing of dijoins. We have proposed a
combinatorial polynomial-time framework to find an
optimal fractional packing for an ideal clutter.

References

[1] F. Barahona: Fractional packing of T -joins.
SIAM Journal on Discrete Mathematics, 17,
2004, pp. 661–669.

[2] H. N. Gabow and K. S. Manu: Packing algo-
rithms for arborescences (and spaninng trees) in
capacitated graphs. Mathematical Programming,
82, 1998, pp. 83–109.

[3] J. Hao and J. B. Orlin: A faster algorithm for
finding the minimum cut in a directed graph.
Journal of Algorithms, 17, 1994, pp. 424–446.

[4] A. Schrijver: A counterexample to a conjecture
of Edmonds and Giles. Discrete Mathematics,
32, 1980, pp. 213–214.

2

