Faculty and Laboratories of Department of Mechano-Informatics

※: Professors denoted by this symbol do not accept new graduate students for the applicable academic year.

[RCAST]
denotes the professors of Research Center for Advanced Science and Technology holding adjunct professorship at School of Information Science and Technology.

[AI center]
denotes the professors of AI Center (*1) holding adjunct professorship at School of Information Science and Technology.

*1 Next Generation Artificial Intelligence Research Division, Center for Education and Research in Information Science and Technology (CERIST), and Next Generation Artificial Intelligence Research Center, The University of Tokyo.

[VR center]
denotes the professors of VR Center (*2) holding adjunct professorship at School of Information Science and Technology.

*2 Virtual Reality Educational Research Division, Center for Education and Research in Information Science and Technology (CERIST), and Virtual Reality Educational Research Center, The University of Tokyo.
Research in this laboratory is focusing on the fundamental functions and systems necessary for future intelligent robots that will live and work in the daily life field and human society. The members are challenging something new through their own integrated robot systems and learning how to build sustainable systems for the future with each other.

(1) **Daily life support humanoid platform**: recognition of situations in human life environments, using tools, dishes, tablewares, and appliances, learning from humans, conversation with humans, etc.

(2) **Musculoskeletal tendon-driven humanoid**: humanlike musculoskeletal body with very many joints and numerous redundant sensors aiming at powerful and supple motions like human, design principle of humanoid body structure, autonomous development of complex sensory-motor system, etc.

(3) **Dynamics whole body control humanoid**: integrating high-torque, high-speed motor drive circuit, high-speed 3D recognition system, dynamics whole-body.

(4) **Transform robotics devices**: embedded CPU for transform robots, integrated intelligent, IMU sensors, onbody communication LAN system, power system etc.

(5) **IRT (Information and Robot Technology) to support human and aging society**: through fusing IT and RT systems, personal mobility robots, affectionate watching appliance are conducted for supporting the future life society

(6) **Robot Open Software System**: design and development of open-source type intelligent robot for mobile manipulation robot.
Professor Ryohei KANZAKI
[RCAST]

RCAST Bldg. 3 Annex
Rm. 357
e-mail: kanzaki@rcast.u-tokyo.ac.jp
URL http://www.brain.rcast.u-tokyo.ac.jp
※New graduate students will not be accepted for the applicable academic year.

Associate Professor
Hirokazu TAKAHASHI

Eng. Bldg. 2 Rm. 81B
e-mail: takahashi@i.u-tokyo.ac.jp
URL http://www.ne.t.u-tokyo.ac.jp

Kanzaki & Takahashi Lab

Research field: The aim of our research is to clarify the basic neural mechanisms for generating adaptive behaviors (or intelligence) using interdisciplinary approaches combining informatics, engineering and biology. As model systems, we use cultured neurons, insect brains and rat brains. Our research deals with investigating bio-machine hybrid systems, and also establishes basic technologies for controlling behavior by external commands to brain functions.

Kanzaki Group (RCAST, Komaba Research Campus)
http://www.brain.rcast.u-tokyo.ac.jp/

(1) Understanding elementary intelligence of insect brains

(2) Odorant sensors based on insect odorant receptors

(3) Physical reservoir computing with neuronal tissues

(4) Neural consciousness of consciousness and learning based on functional imaging

Takahashi Group (Hongo Campus)
http://www.ne.t.u-tokyo.ac.jp/
Laboratory for Intelligent Systems and Informatics (ISI)

http://www.isi.imi.i.u-tokyo.ac.jp/

Breakthroughs Towards Truly Intelligent Systems in the Real World:
Towards truly intelligent behavior in the complex and uncertain real world, we reveal the principles of human intelligence and develop next generation AI, with applications to real world tasks.

1. **Next Generation AI & Robotics Intelligence**
Deep reinforcement imitation learning, multi-agent collaborative learning, dynamical systems/chaos/reservoir computing, spiking neural networks, free energy principle/predictive coding, dual-arm robotic manipulation, behavior emergence/immediate adaptation, autonomous systems, intention understanding, AI ethics

2. **Elucidating/Modeling Human Intelligence, Origin of Intelligence**
Whole brain simulation, Embodied cognition/behavior, Emotion/Feeling Model, Fetus/neonate embodied brain development simulation, Acquisition of concepts/language, Self-other/social cognition, Emergence of consciousness, Brain science and modeling of moral/value/intention/motivation/creativity

3. **Bio-inspired Robots & Adaptive/Learning Control**

4. **AI Tech for Medical/Welfare/Handicapped & Global Issues**
Monitoring & risk prediction of behavior/health, Clinical applications, Interactive elderly care robots, Understanding developmental disorders and alleviative technology for their sufferings, Agile-legal tech.
Research on Cybernetic Interface aims to study interfaces that unite human and computer seamlessly. Our particular interest is in exploring Cybernetic Interface on the basis of Virtual Reality (VR) and Computer Supported Cooperative Work (CSCW) technologies. We focus not only on system development, but also on exploring innovative contents in application areas, and studying the impact of human-computer interaction on psychological and social science research. Specifically, we are conducting research on multi-modal/cross-modal interfaces including tactile, olfactory, and gustatory senses, human augmentation technologies to enhance human physical and cognitive abilities, social robots, and educational systems using virtual and augmented reality.

Virtual Reality / Mixed Reality
- Multi-modal and Cross-modal Interfaces
- Redirected Walking Techniques
- Electrical Stimulation for Presenting Sensations
- Human Augmentation with Virtual and Augmented Reality
- Ghost Engineering (Augmenting Perception/Cognition with Embodied Avatars)

Computer Supported Cooperative Work (CSCW) / Human-Computer Interaction
- Telepresence Systems for Enhancing Remote Communication
- Behavior Elicitation & Emotion Evacuation Interfaces
- Virtual Reality-Based Education, Rehabilitation, Consultation
- Social Robot, Human-Robot Interaction, and social media

Kuzuoka-Amemiya-Narumi Laboratory
http://www.cyber.t.u-tokyo.ac.jp

In summary, the Kuzuoka-Amemiya-Narumi Laboratory focuses on developing innovative interfaces that unite human and computer in a seamless manner, exploring the impact of such interactions on psychological and social research through technologies like virtual reality, mixed reality, and computer-supported cooperative work.
Dynamics and Control Systems Laboratory

http://www.ynl.t.u-tokyo.ac.jp/

(1) Highly Robust Autonomous Driving Systems of Cars and Trucks
(2) AI-based Autonomous Harvest/Transport Systems for Vegetables and Fruits
(3) Human Sports Motion Biomechanics
(4) Robot Control & Actuators for Dynamic, Flexible and Skillful Human Motion
(5) Advanced Optical Sensing and Image Understanding
Machine Intelligence Laboratory

http://www.mi.t.u-tokyo.ac.jp/

Advanced Intelligent System for Recognition in Real-world, Contents Generation and Knowledge Discovery

Our goal is to invent advanced intelligent systems for real-world recognition, contents generation and knowledge discovery by combining useful but infinite information in the physical space with a massive amount of data and powerful computational resources in cyberspace. To tackle this challenging problem, we utilize all resources in the area of computer science, including the mathematical basis and robotics.

1. **Mathematical Basis**
 - Information theory, machine learning, deep learning, data mining, pattern recognition, stochastic/statistical theory, time series analysis, causality analysis, learning theory, feature extraction

2. **Recognition, Understanding and Thinking**
 - Computer vision, image recognition and retrieval, 3D vision, behavior recognition, multimodal recognition, emotion understanding, natural language processing, speech and music information processing, medical information processing, big data

3. **Contents Creation**
 - Sentence generation and summarization of image and video, image generation from sentences, dialog system, automatic article generation system

<table>
<thead>
<tr>
<th>Mathematical Basis</th>
<th>Recognition, Understanding and Thinking</th>
<th>Contents Creation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information theory, machine learning, deep learning, data mining, pattern recognition, stochastic/statistical theory, time series analysis, causality analysis, learning theory, feature extraction</td>
<td>Computer vision, image recognition and retrieval, 3D vision, behavior recognition, multimodal recognition, emotion understanding, natural language processing, speech and music information processing, medical information processing, big data</td>
<td>Sentence generation and summarization of image and video, image generation from sentences, dialog system, automatic article generation system</td>
</tr>
</tbody>
</table>

- **A silver car parked in a residential street.**
- **A brown horse standing in a lush green field.**
- **Image feature extraction based on information theory and machine learning**
- **Causal analysis for meteorological data**
- **Integration of computer vision, computer graphics, and machine learning**
- **Automatic sentence generation system**
- **Automatic realistic image generation of unseen object**

- **Image feature extraction base on information theory and machine learning**
- **Causal analysis for meteorological data**
- **Integration of computer vision, computer graphics, and machine learning**
- **Automatic sentence generation system**
- **Automatic realistic image generation of unseen object**
Our group focuses on creating bio-hybrid systems that combine bio-functional materials with micro/nano devices. As one example, biohybrid robots powered with skeletal muscle tissues allow to engineer dynamic systems of living organisms. As another example, biohybrid sensors with recombinant cells can detect target materials with high sensitivity and selectivity. We aim to realize such hybrid systems by combining various disciplines, such as mechanics, informatics, biophysics, cell biology, and material sciences. Personnel interested in multidisciplinary research, with any of these abovementioned backgrounds, are warmly welcomed to join us.

Biohybrid System Lab.
http://www.hybrid.t.u-tokyo.ac.jp/

Cyborg technology Enhance robots with living tissues, or upgrade living body by implanting artificial materials.

- A biohybrid robot with an antagonistic pair of skeletal muscle tissues reconstructed in-vitro. Contractions of the skeletal muscle tissues can be controlled via electrical stimulation.
- A robot says “no” to a smell upon detecting relevant odorant molecules using a cell-based sensor chip.
- Robot covered by skin tissue, which can heal its damage like what the living systems do.

MEMS Fabricate microdevices with refined structures and unique functions using microfabrication techniques.

- Manipulate and arrange biomolecules or cells effectively using microfluidics, and achieve biological assays with unprecedented accuracy.
- Compartimented, uniform-sized hydrogel beads can be fabricated or move using microfluidics.
- Micro lens for the dynamic ON/OFF control of 3D displays. The lens consists of deformable microchannels actuated by hydraulic pressures.
- Construction of arbitrary neuron networks by arranging cell-laden micro-plates.

Biofabrication Fabricate biological “gears” and “wheels” using molecules or cells, assemble three-dimensional “machines,” i.e., tissues/organs, for representative medicine or drug-testing models.

- Process living cells into ensifer beads, accumulate the beads to fabricate millimeter scale 3D tissues.
- Cell fiber: a thin, long, fibrous tissue fabricated using microfluidic techniques.
- A mini beef steak fabricated using cells isolated from bovine muscles.

Artificial cell membranes Manufacture cell membranes and eventually cells from scratch for biosensing.

- A robot mounted with an artificial cell membrane based odorant sensor, which can move in response to smell.
- Inspired by the principle of bubble gun, artificial cells can be fabricated by jetting a flow onto an artificial cell membrane.

- Portable sensor powered by an artificial cell membrane. The membrane consists of proteins derived from olfactory cells to detect smells.