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Problem 1
Let ¥ = {a,b,c}. For a language L C T* over ¥, the language H(L) C T* is defined by:
H(L) ={we X" |ww € L}.

For example, if L1 = {aa, abc, abab, baab, cca}, then H(L1) = {a, ab}.
Answer the following questions.

(1) Let Lo be the language expressed by the regular expression a(a + b)*c(a + b)*be. Express
H(Lg) as a regular expression.

(2) Let L3 be the language accepted by the finite automaton given below. Here, qg is the initial
state and {q1} is the set of accepting states. Construct a deterministic finite automaton with
the minimum number of states which accepts H(L3).

b,c

.-_‘)

a,c
(3) Answer whether Proposition 1 given below is true or not. If it is true, then give a proof;
otherwise, give a counterexample with a brief explanation.

Proposition 1: For every regular language L C ¥* over &, H(L) is also a regular
language.

(4) Answer whether Proposition 2 given below is true or not. If it is true, then give a proof;
otherwise, give a counterexample with a brief explanation.

Proposition 2: For every context-free language L C ¥* over %, H(L) is also a
context-free language.
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Loop: 1w x4, 0 (x1) # x4 <~ memory[xi + 0]
add x3, x3, x4 # x3 <~ x3 + x4
sw x3, 0 (x1) # memory[x1 + 0] <~ x3
addi x1, x1, 4 # x1 <~ x1 + 4

blt x1, x2, Loop # if x1 < x2, goto Loop

(38) MW (2) D777 APDTRTOMHFIIMNINT 2/ a Lty ID16 ¥y rOMSERFEL LT,
BUFODRIZRT Format A ¥ Format B%E X 5. X[YIWXXDYEy FEHZRL, X[H:L] &
XOHEY FHPLLE Y FHETOVE Y MRRT. {X, Y}IE, X2 YOLy MEEERT.
rs1 ¥ rs2 @Y —AFARIT VP, rd@FRAT 4 32— a ARSI UF, imm iZEERE ZhEh
AT, L, BEIATORVIEMEDOY Y MX0 ¥ T3, Format A ¥ Format BOY 5 53
ARG Y FRPHED 72— FIZX DB OEBRER>HB T2 2BH L HIZEZ k.

Format A Format B
[16:12] [11:9] [8:6] [5:3] [2:0] [15:12] [11:9] [8:6] {5:3] [2:0]
0x0 | rs2 rsl rd 0x0 |add 0x0 { rs2 rsl rd 0x0 |add
imm[6:0] rsi rd 0x1 |addi imm[6:0] rsi rd 0x1 |addi
imm[6:0] rsi rd 0x2 |1lw imm[6:0] rsi rd 0x2 |1lw
imm[6:0] rsi rs2 0x3 |sw imm[6:3] rs2 rsi imm([2:0] 0x3 |sw
imm[7:1] rsi | rs2 | 0x4 |blt |{imm[7],imm[5:3]}| rs2 rsl | {imm{2:1],imm[6]}| Ox4 |bit




Problem 2

Consider a 5-stage pipeline processor P that issues up to one instruction per clock cycle. P has
eight registers from x0 to x7, and the data widths of the load/store instructions are 4 bytes. P can
read instructions without delay. P has a data cache. P stalls for eight clock cycles for each cache
miss, and there is no stall for cache hits. P stalls for one clock cycle when the next instruction of a
load instruction uses the load result. P will not stall for any other reasons and has no prefetching
mechanism. P fetches the next two instructions after a branch instruction speculatively based on
the branch prediction. In case of a branch misprediction, P flushes the speculatively fetched two
instructions and then fetches a correct instruction from the branch target.

Answer the following questions.

(1) Suppose that, for the execution of some program S on P, 1,000 instructions were executed,
and it took 1,154 clock cycles. S consists of 20% load instructions, 15% store instructions,
10% branch instructions, and 55% arithmetic and logic instructions. Assume that 40% of the
load instructions are immediately followed by an instruction that uses the result. Assume
that no cache miss occurs for the execution of 8. Calculate the branch misprediction rate up
to two places of decimals.

(2) Suppose that the execution of the program below on P took 1,796 clock cycles. The behavior
of each instruction is described as a comment (the description after #) in the program, where
memory|addr| represents a memory access to the address addr. addi and add are arithmetic
and logic instructions, 1w is a load instruction, sw is a store instruction, and blt is a branch
instruction. The data cache of P is direct-mapped and stores 4096 bytes of data. The
initial state of the data cache is empty. Assume that no branch misprediction occurs for the
execution of the program. The initial values of x1, x2, and x3 are 0, 1024, and 0, respectively.
Calculate the cache line size of P.

Loop: 1w x4, 0 (x1)
add x3, x3, x4
sw x3, 0 (x1)
addi x1, x1, 4
blt x1, x2, Loop

x4 <- memory[xl + 0]
x3 <- x3 + x4
memory[x1 + 0] <- x3
x1 <-x1 +4

if x1 < x2, goto Loop

H OH K HH

(3) Consider Format A and Format B in the table below as the 16-bit instruction representation
for a processor that supports all instructions in the program of Question (2). X[Y] repre-
sents the Y-th bit of X, and X[H:L] represents bits from the H-th bit to the L-th bit of X.
{X, Y} represents a bit concatenation of X and Y. rs1 and rs2 represent source operands,
rd represents a destination operand, and imm represents an immediate value, respectively.
Assume that unspecified bits of the immediate value are 0. Answer which of Format A and
Format B consumes more circuit resources for decoding the operands and immediate value,
and explain why.

Format A Format B
[15:12] [11:9] ([8:6] [5:3] [2:0] [15:12] [11:9] [8:6] [5:3] [2:0]
0x0 } rs2 rsl rd 0x0 |add 0x0 | rs2 rsi rd 0x0 |add
imm[6:0] rsl rd 0x1 |addi imm[6:0] rsl rd 0x1 |addi
imm[6:0] rsi rd 0x2 | 1w imm[6:0] rsi rd 0x2 |1lw
imm[6:0] rsi rs2 0x3 |sw imm[6:3] rs2 rsi imm[2:0] 0x3 |sw
imm[7:1] rsl | rs2 | Ox4 |blt |{imm[7],imm[5:3]1}| =rs2 rsl |{imm[2:1],imm[6]}| Ox4 |blt
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Problem 3

Consider the scheduling of processes P; (i = 1,2,3,4,5) in an operating system. The arrival
times of Py, Py, P3, Py and Ps are 0, 5, 10, 15 and 20, and processing times are 40, 60, 30, 40 and
10, respectively. We consider the following four scheduling algorithms: (a) first come, first serve
(FCFS), (b) (non-preemptive) shortest job first (SJF), (c) shortest remaining time first (SRTF),
and (d) round robin (RR) (time quantum is 30). Here, we assume that only one process can run
at a time and unmentioned costs can be ignored.

Also, the operations to acquire and release binary semaphores S;(j = 1,2) are denoted as
wait(S;) and signal(Sj), respectively. If the operation wait(S;) cannot acquire Sj, it puts the
executing process at the end of the waiting queue for S;. The operation signal(S;) releases S;,
and if the waiting queue for S is non-empty, then the first process in the waiting queue is moved
to the ready queue.

Here, the waiting time of a process is the total amount of time the process spends waiting in the
ready queue or the waiting queue for S; (j = 1,2). The average waiting time of the processes is
the average of the waiting time of each process P; (i = 1,2, 3,4, 5).

For each of the scheduling algorithms (a) to (d), answer the following questions. In questions
(1) and (2), assume that the processes do not perform any semaphore operations.

(1) Draw the time P; (i = 1,2, 3,4, 5) is scheduled in the form of a Gantt chart as shown below.

P P, Ps B Py
0 40 100 130 170 180

(2) Calculate the average waiting time of the processes.

(3) Suppose that P;, P3, and Ps perform wait(S;) at startup and signal(S1) at termination,
respectively, and P and P4 do not perform any semaphore operations. Calculate the average
waiting time of the processes in this case.

(4) Consider the case where P; performs semaphore operations as follows.
e P, and P, perform wait(S;) at startup, wait(Ss) after a runtime of 15 elapsed, and

signal(S2) and signal(S1) at termination in this order.

e P3 and Py perform wait(S) at startup, wait(S1) after a runtime of 15 elapsed, and
signal(S1) and signal(S2) at termination in this order.

e P5 does not perform any semaphore operations.

In this case, if a deadlock occurs, find the time when the deadlock occurs. If no deadlock
occurs, calculate the average waiting time of the processes.
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Problem 4

Below we consider an undirected graph G = (Vg, Eg) with no self-loops (edges joining the same
vertex) nor multi-edges (two or more edges joining the same two vertices). For a positive integer
k, we say that G is k-connected if |Vg| > k and it remains connected after removing any k — 1
vertices. A subgraph C of G is called a cycle if C is 2-connected and every vertex of C has degree
2 in C. You may use the following theorems (I) and (II) in your answers.

(I) For any undirected graph G, any two non-adjacent (i.e., not directly connected by an edge),
distinct vertices a,b € Vg, and any positive integer k, one of the following conditions holds
(Menger’s theorem).

(i) There exist k internally vertex disjoint paths between a and b (two paths are internally
vertex disjoint if they do not share any vertex, except the two endpoints).
(ii) By removing at most k — 1 vertices other than a,b from G, one can ensure that there

exists no path between a and b.

(II) There exists a polynomial time algorithm in |Vg|,|Eg|, and k which, given an undirected
graph G, two non-adjacent, distinct vertices a,b € Vg, and a positive integer k as input,
decides which of the two conditions (i) and (ii) of (I) above holds.

Answer the following questions.

(1) Give a polynomial time algorithm in |V| and |E¢| which, given an undirected graph G and
two distinct vertices a,b € Vi as input, decides whether there exists a cycle that contains
both a and b in G. Here, you may use the algorithm of (II) above.

(2) Prove that, for any positive integer k, if an undirected graph G is k-connected, then the
following holds for any set A C Vg consisting of k vertices.

“Let G’ be the graph obtained from G by adding a new vertex u, and adding an
edge (u,v) for every vertex v of A. Then, G’ is also k-connected.”

(3) Prove that if an undirected graph G is 3-connected, then for any three vertices a,b,c € Vg,
G has a cycle containing all of a,b, and c.

(4) Prove that, for any integer k& > 2, if an undirected graph G is k-connected, then for any set
A C Vg consisting of k vertices, G has a cycle containing all the vertices in A.
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