A1
S EXEDES (0,0} £T5. TEDBELC T IZHLT, T(L) 2 UFOLS LEDS.
I(L) = {v e S*| 3w e =*.(jv| = jw| Avw € L)}
1L, |zl BXFF z DRE 2ET. HIZIE, L = {aa, ba, abb, abbb} £ F 5 ¥, T(L1) = {a, b, ab}

TH5.
UTOMWIZEZ L.

(1) Lo = {(ab)" | n > 0} £ F 5. T(Ly) % EHEE %AW TEY.

(2) Lg = {a™™a™b™ |n>0,m >0} £§5. T(L3) #EETHXMEHERZEZ XK.

(B) M =(Q,%,6,q0, F) ZIREMAERA—b~ bV, Ly 2 MPRESTZEELTS. /L,
Q, 3, qo, F & M DRI S, BYHEL, MHPRE ZBRELEGEZZAETNRTLIOLTS.

BRENG QxS — Q RRBEHRTHS LIRELT L. [(Ly) ¢ BHET2AEA— b
hog, MEABIIEL L HICER L.

(4) AT O@EPEZ S, L2ERT BXAREHXED S T(L) 2 EKT 5 IR E BXE % R
THAEEBELRHPFL L BIEX L CUMEBBEEORDYIZ Ty v a Xy vt -2y
ERVTEEWV). Baold, MELBHHL 23 ICKHE2RE.

BB TWHARBXIMEHEELC S IZ2W TS, I(L) IXREHEETH 5. |

Problem 1

Let ¥ be the set {a, b} of letters. For a language L C * over ¥, we define I'(L) as follows.
I(L)={veXl|3weZ (v =|wAvwe L)}

Here, |z| denotes the length of the string x. For example, if L1 = {aa,ba,abb,abbb}, then
I(L1) = {a,b, ab}.
Answer the following questions.

(1) Let Lo = {(ab)™ | n > 0}. Express I'(L2) using a regular expression.
(2) Let Ly = {a™b"a™b™ | n > 0, m > 0}. Give a context-free grammar that generates I'(L3).

(3) Let M = (Q,%,6,90, F) be a deterministic finite automaton, and let L be the language
accepted by M. Here, @, d, qo, and F' are the set of states, the transition function, the initial
state, and the set of final states of M, respectively. You may assume that the transition
function 6 : Q@ x ¥ — @ is total. Give a finite automaton that accepts I'(L4), with a brief
explanation.

(4) If the proposition given below is true, then give how to construct a context-free grammar
that generates I'(L), from a context-free grammar that generates L (you may use push-down
automata instead of context-free grammars), with a brief explanation. Otherwise, give a
counterexample, with a brief explanation.

Proposition: “For every context-free language L C ¥* T'(L) is a context-free language.”

%R 2

FRLD nBOEBB»SIR8E P = {z1,22,..., %} EmEOEE P, P,...,Pp (1 <m < n,
P=PUP,U...UPp, Vi,j(i #j) PNP=0) TRETEILEEXS. ZIT, DIdELELE%E
Y., Z0LE, £85I Q=[P,P,....,Pp| 2 POSEL IX. UTFTIHREBEESS, H2VWRIE
BREOPKBMEINZZAZ Yy 7 SIZHL, ZhIZEENIBBOME ||S| &L TS, b, §AEE
ABBVEERR Y S THBREIL S| =0 LT 5.

POREQ =[P, Py,..., Pl 2L, mazsum(Q) = max; | B|| LEHET 5. PO mEADEEA
DHEQELUTEALNSEHDTRTOHT mazsum(Q) ML 0183 E/IMEE minmazsum(P,m)
eBXl.

PAF DRI — R minmazsum(P,m) QELUEER RO BTN TV XL THS. 1K LUUTT,
push(S,z) 1ZAZY 2 Sz Ty a T 5FGRE, pop(S) XAXY 27 SOy TEFEEZRY TL,
Ry TURBEREERTFRE, top(S) BAXY 7 SO by TEREETPEHEETHS. b, top(S)
¥ pop(S) AU S 12 LR UAEEET A, top(S) AR v 7 DRIEEZE LA\,

1: approz-minmazsum(BHEE P, B m) {

2 Q=|P,P,....,Pp « POmEOES~DERDYE,

3: for (1<i<m){

4: S; «— BARY U,

5: foreach (z € P;) { push(S;, z); }

6: }

7 while(1) {

8: J < argmax; ||Sill; /*¥J « ||Si]| BPBKTHEiDOLD */
9: k <+ argmin; ||S;|; /*k « ||Si|| BPBRNTHE i DV ED */
10: if (top(S;) + ISkl > [1S;l) break;

11: push(Sk, pop(S;));

12: }

13: return ||S;);

14: }

UTFTORWWIZEZ &.
(1) minmazsum({3,4,5,6},2) &K k.
(2) minmazsum(P,m) > ||P||/m T®» 5 Z & ZxR¥.

@) LogELa—-—FizsWT, 2 THTEYD LS 2 n#E O BERLEELTS,
approz-minmazsum(P,m) < 2 - minmazsum(P,m) B VLD I & &RE

(4) EDEE - NIZBWT, 2??5(&:0)4:97&53%Q%@?Rbf'?:bf% while L— 7D
DRUEIEA G2 nBTHE I & E2RE

(5) ERT7 VT Y XADETHEE Onlogm) ¥ F 5 oIt BEA F— XS & OF O
BB &

Problem 2

We consider a division of a set of mutually distinct » positive integers P = {z1,zg,...,z,} into
msets Py, Py,...,Pp (1 <m <n, P=PUPU...UPny,Vi,j(i # j) P,NP; = 0), where § denotes
an empty set. The set sequence @ = [Py, Py, ..., Py is called a division of P. We denote by ||S||
the summation of all the integers in S if S is a set of integers or a stack consisting of integers.
Note that ||S]| = 0 in case S is an empty set or an empty stack.

Let mazsum(Q) = max; ||| for a division @ = [Py, Py, ..., Pp] of P. Let minmazsum(P,m)
denote the minimum value of mazsum(Q) among all the possible divisions Q of P into m sets.

The following pseudo code shows an algorithm that computes an approximation of minmazsum(P, m).
Below, push(S, z) pushes z onto the stack S, pop(S) pops the top element of the stack S and re-
turns the popped element, and top(S) returns the top element of the stack S. Note that top(S)
and pop(S) return the same value for the same stack S, but top(S) does not modify the stack.

1: approz.minmazsum(integer set P, integer m) {
2: Q=|[P,Ps,...,P,] < An arbitrary division of P into m sets;
3: for 1<i<m){ ‘ ‘
4: S; + an empty stack;
5: foreach (z € P;) { push(S;, z); }
6: }
7: while(1) {
8: J <« argmax; ||Sill; /*J < one of the ¢’s that maximize ||S;|| */
9: k < argmin, ||Si|l; /* k < one of the ¢’s that minimize ||S;| */
10: if (top(S;) + ISkl = ||S5l]) break;
11: push(Sk, pop(S;));
12: }
13: return ||S;);
14: }

Answer the following questions.
(1) Calculate minmazsum({3,4,5,6},2).
(2) Show minmazsum(P,m) > || P|/m.

(3) Show that approz-minmazsum(P,m) < 2-minmazsum(P, m) holds, regardless of whatever
division @ is chosen in line 2 of the above code.

(4) Show that the while loop in the above code will be repeated at most n times, regardless of
whatever division @ is chosen in line 2.

(5) Describe data structures needed to make the above algorithm run in O(nlogm) time, and
explain how to use them.

[RE 3

ARV—=TFT A VITVATFLIBENWT, R=YBEBTNVITV XLER=V 75—V bOEHEEZRES
TEHRHFHIND, TLITVALE2FMT S, BEAMY VY] ERBENIEEDAETY S
IR U TT7 VIV AL E2ETL, =V T4V OEREHZS. 22T, ATYSEMIZ—
HOR—-VEBIZL->TREINS.

UToRMWIZE % L.

(1) BE2R—VEBT VTV AL L LTHISNTWADIE, IEEEDEVEFER IR VwR—Y
BBERTEZTNVIYALTHS. 3EDR—IY TV —LDFHTRET, MHHRETEINASD
R=T TV —=LNETHIEEIZ, UTOBBA NI VA Iz U TRERR—VBRT VL TY
ALBEITTEIETHRETER-VYT7 -V NORIBEAEEZ L.

BRAM) 2 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0, 1
(2) BHIRA_R—VERTNTY XLIZBBANY VIIZETEREDOEHRBBEIZZBZ L WS HT
FEPHEETHS. TOREFEL UT, Least Recently Used (LRU) 7L I X3 &RIZ
BLPRWHERAI N TWREWA—VUREBHRT S, 3EOR—Y 7L —L0FAETEET, IR
BTRENSDR—V TV —LPETHBIHEIC, M (1) THEALALZSBA M) VT L
TLRUTNVITY AL E2RTTBIETRETER-VYT7x—)V NOEEEEZ &.

B) N—FVzTRELLTOAV VEPFETE, R=YVT—TNVDEIVMNIKEDHT VA
CEED NS T 4 =V FBPEET D5, UTOBA»S LRU 7V IV X LDEEH
HBEBRAR L.

o HU Y RITNDEEINT B D,
o WU VADMEIFNOR-TF—TNDT 4 =) RiZa—Zh3h.
o BEEHWMIAMRONR-VIIED LS ITEIRE N D D

(4) EFMZEZEOBEAN»S, LRUTLVIY XLDORER 1 DEE L.

() R=VF—TNDELY NYDBBBLY FEF-oTVBL W3 REDS &, LRU DERT IV
TV XLDERSEEBRR &,

Problem 3

In an operating system, a page replacement algorithm should be designed to reduce the number

of page faults. To evaluate the algorithm, we count the number of page faults caused by running

the algorithm on a particular string of memory references, called a “reference string”. Here, each

memory reference is represented by a page number.

Answer the following questions.

(1)

()

An optimal page replacement algorithm replaces a page that will not be used in future for
the longest period of time. Assuming that three page frames are available and they are
empty in the initial state, give the number of page faults caused by running the optimal page
replacement algorithm on the following reference string.

Reference string: 7,0, 1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0, 1
The optimal page replacement algorithm is difficult to implement, because it requires future
knowledge of the reference string. As an alternative of the optimal page replacement algo-
rithm, the Least Recently Used (LRU) algorithm replaces a page that has not been used for
the longest period of time. Assuming that three page frames are available and they are empty

in the initial state, give the number of page faults caused by running the LRU algorithm on
the reference string used in question (1).

Under the assumption that you can use a counter supported by hardware and it is associated
with a field contained by each entry of the page table, describe how to implement the LRU
algorithm from the following standpoints.

e When is the counter incremented?

e When is the value of the counter copied to the page table field?

e How is the page to be replaced selected?
Explain a drawback of the LRU algorithm from the practical implementation point of view.

Under the assumption that each entry of the page table has a reference bit, describe how to
implement an LRU-approximation algorithm.

EIRE 4
AV =R T =% F 7F Y IZBHTHUTORIWIZEZ k.
(1) MFRT CEEOTHI S LhH5 Uty ¥ A LTIV NVLETTHY, HiH (a) B

Bonk. A—070r 7520070y ¥ B ETIV IV LEFTELHT (b) HES
Nz, 7avev Y 7—FF7F v OBEPS, ZOEVHEU ZHEEBEE X,

#include <stdio.h>

union my_uni {

int v;
char arr[4]; 0x12 0x78
}; : 0x34 0x56
0x56 0x34
int main(){ 0x78 0x12
union my_uni val = {0x12345678};
int i;
for(i=0; i<4; i++){ 71 (a) #77 (b)
printf ("Ox%x\n", val.arr[i]);
}
return O;

(2) 74T —F 4 Y IBBEREBNSAT TS0 T Oy FIZB T BT — ZAF— R LA
B 1 & BRI % TR &

(3) £ET3R2FENT b (32x20 N1 M) OF X2 FKET S5, 41 -y NTYSTF14 7
FROF vy v arREVREZE, ZOFvyyYarEYDT RLVAEIR32EY M, Fvv
Va4 I X (Tav YL X) 126431 b THB. ZOF vy VaiteDFyyia-
AVFYIRLEZTDEY MERZZFhFhRD L, -, ZOF vy arE) DRI 2 EE
$25 RAM O#AR (Yy M) Zkod k.

(4) |EXF Yy Va2l T—RFy vy abkBRTIE70 vV E2EXLE. GdFrvialkT—
RE¥YYVaDMATHEFY Yy Y aIABNRELBRVHED IO T oY v ¥ D CPI (cycles per
instruction) 2 C £ 35, WINPDF vy v P aTIATEES, IRABIZP IOy ¥4
INVDHEY YV a2aIARFVT 4 PBMTHELRS., 200y Y kT, 57005
LEEFTUEEIA, 2FTHSFOU—F - AN THLOHEN R, THotz. Fh, D
Tul T AETOBROGEX Yy Y aDIARIZR;, F—RF¥vvadIARE R, IPC
(instructions per cycle) & I THo7z. C, R;, Ry, Ry, PEEWT I %EY.

Problem 4

Answer the following questions on computer architecture.

(1)

When the following program in C language was compiled and executed on a processor A, the
output (a) was obtained. When the same program was compiled and executed on a processor
B, the output (b) was obtained. Explain the reason why the difference occurred from the
viewpoint of processor architecture.

#include <stdio.h>

union my_uni {

int v;
char arr[4]; 0x12 0x78
3 0x34 0x56
0x56 0x34
int main(){ 0x78 0x12
union my_uni val = {0x12345678};
int i;

for(i=0; i<4; i+){ Output (a) Output (b)

printf ("0x%x\n", val.arr[il);
}

return 0;

Explain data-hazard and control-hazard on a pipeline processor with no forwarding mecha-
nism, using a concrete example.

Consider a 4-way set-associative cache memory that stores totally 32 kibibytes (32 x 210
bytes) of data. The address width of the cache memory is 32 bits, and the cache line size
(block size) is 64 bytes. Calculate the bit width of the cache index and that of a tag of the
cache memory, respectively. Calculate also the total RAM capacity (the number of bits) for
storing the tags of the cache memory.

Consider a processor with an instruction cache and a data cache. Suppose that the CPI (cy-
cles per instruction) of the processor is C' when there is no cache miss on both the instruction
and data caches. When there is a cache miss on any of the caches, a cache miss penalty of
P clock cycles is additionally imposed. Suppose that when a program was executed on the
processor, the ratio of the number of load/store instructions to the total number of executed
instructions was Rjs. Suppose also that, for that program execution, the cache miss rate of
the instruction cache was R;, the cache miss rate of the data cache was Ry, and the IPC
(instructions per cycle) of the processor was I. Express I in terms of C, R;, R4, Ris, and P.

