fIRER 1
FRV—F 4 VIV RAFAICBELUTUTOMWCEZ &.

(1) 52070 vR Py, Py, P, P5, LICNT B3RS Y 2a—) Y 2NV, &7t R P, D3#
R (ms) LAFERFM (ms) 22PN A L CTRTDIDOL TS, 7, FRNCETAIE
O3 1DDRT, AVFEXNZIL v FDOF—nNR—ny FRFBEATEXZd3DL T3,
Ag=35, A1 = Ay = A3 =25, A4 =0,Cp=10,C; =15,C>=20,C3 =30, Cy =50 TH 3

2, 5207 X% Preemptive Shortest Job First 7TV XATRIyr T a—i Lkl
EOWR -7 o7y FIREL EENERBERD X, 22T, 2—r757 Y PRI
7ot RQEFE, LETETETORML L, IEEREL I3 0t 20HEH» > ETHRET
DR LT 3.

(2) (1) AU BERRE L AR % B2 520 71+ X % Non-Preemptive Shortest Job First
TNIYAXLTRY 2=V L EOWR -7 57 Y FRE L BEREREEZRD .

(3) Fv (1) AT IERL L NHRE .2 305200 0 X% R4 LA T4 22310 ms D Round
Robin 7VIY XATCRY D a—N L7 SOFEHE—-Y 75V ¥ FRIE L FEHEREZR
D&, TOLABRL LRTARREMIS B0 BB HEBICRD T OELRDR L LRS
A RAVRENZDDOL TS, £/, FiHHE L =72 ER13 Round Robin ¥ 2 —DFKE
EMEN3b0L L, MOS0 ALFERIZE 2 — DKREBICEH LB ICIZE D oL
REDOE Vo 205 BEEINTEMEIN 23D T 5.

(4) BROFARL—F 4 Y IV AFABIRAYTFFR LR v F DA —rt—Ay FIZEETER.
ZDF ==~y F2ERL 2B, Round Robin 7242V X4 DK L REICOWT CPU
ArVa—YyZe XY EHOBS» BT L.

(5) ARDARV—F 4 YIS AT ATR T O AWMERERET 3 DIT LIEUIF Aging HRA
Ebh 3. Aging AROEABRY N RIIOEAEESRITN T 2 BAfic oW THIgEE &.

IR 2

C?%?i#hkﬂT@fﬂyiAmﬁﬁEﬂaGaﬁ]#Baﬁﬂ]i?%ﬁﬁﬁﬁﬂ?%“ﬂ
mysort(a, i, j) ZEBEL TV (i<j). 77 2HOMK miltfrac(k, 1, m) i3k, 1, m A8
EOBMTH2L Ekx L LORPMOEMERD 20K THD, v, x, 5, z REOBMERL T 3.
EMOHEIZ A —N—T0-LR2VEDL T 3.

int multfrac(int k, int 1, int m) {
return (k * 1 + (m-1))/m;
}

void compare_swap(int *p, int *q) {
if (xp > *q) {
int tmp = x*p;
*p = *q;
*q = tmp;

1

void mysort(int all, int i, int j) {
int k = j - i;
if (k < 4) {
l X |
}

else {
mysort(a, i, i + multfrac(k, x, w));

mysort(a, j - multfrac(k, y, w), j);
mysort(a, i, i + multfrac(k, z, w));

UToRWcEZ &.

(1) (W x,5,2)0(4, 3,3,3) THHHE, 2 X [CANZREBIRa— FEBRE. 7
2L, compare swap DA DHIMMUIHLIZRT LT3, 2B, a— FIMESchbiaTd
Rw.,

(2) mysort(a, 0, n) HMUIHI NI — KA X WRIFThIEROLH % T(n) &
BETS. (w,x,7,2)51(4,3,3,3) THIBE, Tn) DniclT3+—X—%5% k.

(3) (w,x,y,2) 1 (4,2,3,3), (4,3,2,3), (43 3,2), (42 3 2) CTh3HADTHLERIZON
T, mysort BEICIE L BfET 2 0 E0 2B X k.

(4) mysort BHWITIEL S BMET 3701w, x, y, z B FTREXE+HRLELE R L.

R 3

Yi={ab}, Ta={t, £} LT3. BwelIkOVT, wDRX% |u| LWL, ¥k, 28 (¥
BROLEREZ0OM) et BuweZ{iZonT, Ml f,elt - D 2UTOLS ICERT 3.

fu(@) = {z1- -2y €T3 |

t if w' = uwv for some u,v € X} such that |u|=i—1
f otherwise

for each i € {1,...,|u'|}}.

TROB, fu(w)Buw 5, w—HTIRINFAOMBMES « CEEHRZ, FhlSonE
21 CEERATRONLGDOTHS. HIXIE, fra(baaadb) = fttff, f(abbab) = ttttt TH3.
EoiT, Bl fu %, UTOERC Lo TS, LOEEE X, LOSHBICERT 2898 2 iR+ 5.

foll) = {fu() | v’ € L}.

BZE, fH({(abb)" | n > 0}) = {(t££)" |n >0} TH 3.
LUTomMWcEz k.

Ty =

(1) fava(babababa) 2R X.
(2) fha(Z}) RERREE A WTRE.

(3) Bw e Zf (LR |uw| > 0) BIUREHARY -+ v ¥ A=(Q,51,0,q, F) B5X bk
tl, ABRETIEMELLTS. RELQ,6,q,F ik, Thzth AORBRE, BB
B, THRR, RELBOREERTIOLL, BB c Qx I - Q BB THS

255, foll) 2REBTH3HREMERA -~ P, MBELBHAZEB ICER L. BB
PHWTD L.

(4) UTOREHERE 51X OMEHOBME (f1(L) 2RETE vy va Xy rr—r= v iii
fo(L) BERT 2 URBESCEEMBELRBHL & ICRBITIWV) 2, Bk oIZRAZTE.

W T RTOBw € B ZOWT, LC O BXREBEBRRLE, (L) bXRAHEE
TH3]

fHIRE 4
AYEa—RT7 %77 F ¢ BT S UTOMNICEL k.

(1) BFiBPERTIRRERY I BFAT LRSS 2 HE, RPN TIR/Y jOF—%
BEVFEETAEV, j i 2RT. UTOTuY S AICHET 37— 2 EL TATRE.
BMBOBER 0 S ahDaxXx v+ UBORER) OFDTHS. IurssrEFT
370ty HiIx0b5 x31 ETDRNRMBEOLI R 2L, x013HIC0 2HEHTIPOLY
RRLFB. aRAY M, REYO addr BHIAND 7 2 £ R % “memory[addr]” ¥ &T.

ME 0) addi x3, x0, 64 # x3 <- x0 + 64

B 1 addi x4, x0, 0 # x4 < x0+0

a8 2) addi x5, x0, 0 # x5 <-x0+ 0

#4% 3) Loop: 1w x6, 0 (x4) # x6 <~ memory[x4 + 0]
e @ add x5, x5, x6 # x5 <- x6 + x6

Wy 5) addi x4, x4, 4 # x4 <-x4+4

mH 6) blt x4, x3, Loop # if x4 < x3, goto Loop
BE D sv x5, 4096 (x0) # memory[x0 + 4096] <- x5

2) By 294 I ABKIQVERITTS, SRRTF-IDAL T4V T 0y F2#ER 3.
o7ty HiR, MPI7 2y F (F) R7F—I, AFFA—-FLVYRXT7zyF (ID) AF—
Y, RIT (EX) RF—Y, XEVYT 78R (MA) A7 -, LIXXEERAH (WB) 27—
VDEDDRAT—ITHBEEINS. EUIRAXDY Y MlZ32TH3. 1270y 24 L 20T
T RATBRMBAERY LF—XAEYRRODOLL, U—-RFY—-FRSWwBEILR
7V7-F@EswdBMARTF =Y TCRAP—ATEZLREV. B8 1wicBT38o—F . 57—
NP — FBRETIHE, FRT—Y, IDRAF—Y, EXXF—-I® 1709 IH L2
DA F—AX#3. HMEMS blt (branch if less than) 13, HEREEN EX X 7 — O CRE
FT3ET, FRTF-IBIUIDRF—-I% A b—LEEE. 2%, DEHSDT xy 78,
270y 7Y 4 7D, BREOMBTE 7 2y FLEV. EX RAF—ITOETREB XU MA
AT=ITDOu—FEERIE, EXAF—JIHPIC I+ V—F 41y Z2Xh330L T 3.
Bo—F « F—BNF— FeRAPERPL L. T, Z0T0Ry ¥ LCH (1) OFBY
TLERITTBRUC, Bo—F F—ZAP— RV DISRRET 30 2BHL L.

(3) MW (2) DFBEy # LT, B (1) 07025 ARETFEBCET 2270y 294 2 K
BRD &K, %7, FHIPC (instructions per cycle) % /N¥EE 2 1% TR X.

(4) MW (1) D777 5B8LUMN (2) 07ty 3280, BIRNIETRHORE L &8 % BiH
®X.

Problem 1

Answer the following questions on operating systems.

1)

(2

3)

4)

(6)

For the scheduling of five processes Py, P1, P2, P3, and Py, the arrival time (ms) and the
computation time (ms) of each process P, are denoted by A; and Cj, respectively. Also,
assume that only one process is allowed to execute at any instant, and the overhead of context
switches can be ignored. Obtain the average turnaround time and the average response time
when the five processes are scheduled by the Preemptive Shortest Job First algorithm, where
Ag =35, Ay = Ay = A3 =25, Ay =0, Cy =10, C) = 15, C3 = 20, C5 = 30, and Cyq = 50.
Here, the turnaround time refers to the time interval from the arrival of the process to the
completion of its execution, and the response time refers to the time interval from the arrival
of the process to the beginning of its execution.

Obtain the average turnaround time and the average response time when the five processes
with the same arrival and computation times as those given in question (1) are scheduled by
the Non-Preemptive Shortest Job First algorithm.

Obtain the average turnaround time and the average response time when the five processes
with the same arrival and computation times as those given in question (1) are scheduled by
the Round Robin algorithm with the time slice 10 ms. The next time slice starts immediately
when the current process does not exhaust its time slice. Also, a new process is added to the
end of the Round Robin queue upon its arrival, and ties are broken in favor of the processes
with shorter remaining computation times if multiple processes arrive at the end of the queue
simultaneously.

In real-world operating systems, the overhead of context switches cannot be ignored. Explain
the pros and cons of the Round Robin algorithm from the viewpoint of CPU scheduling and
memory management, when this overhead is considered.

The Aging scheme is often used to determine process priorities in real-world operating sys-
tems. Explain the basic concept of the Aging scheme and its advantage over the classical
static-priority scheme.

Problem 2

The following program written in C language defines a function mysort(a, i, j), which sorts
an integer array a from a[i] to a[j-1] in ascending order (where i<j). The function multfrac(k,
1, m) used in the program returns the least integer that is greater than or equal to k x %, when k,

1, and m are positive integers. Assume that w, x, y, and z are positive integer constants. Assume
also that integer operations never overflow.

int multfrac(int k, int 1, int m) {
return (k * 1 + (m-1))/m;
}

void compare_swap(int *p, int *q) {
if (xp > xq) {
int tmp = *p;
*p = Xxq;
*q = tmp;

void mysort(int a[]l, int i, int j) {
int k = j - i;
if (k < 4) {

I X |
}
else {
mysort(a, i, i + multfrac(k, x, w));
mysort(a, j - multfrac(k, y, w), j);
mysort(a, i, i + multfrac(k, z, w));
}

Answer the following questions.

(1) Answer appropriate code to fill the blank EI when (w, x, y, z) is (4, 3, 3, 3). You are
not allowed to use a function call except for compare_swap. The code may consist of multiple
lines.

(2) Let T(n) denote the number of times that the code fragment [X | is executed while
mysort(a, 0, n) is called. Give the order of T'(n) on n when (w, x, y, z) is (4, 3, 3, 3).

(3) Answer whether or not mysort always works correctly for each case where (w, x, y, z) is (4,
2,3,3), (43,2 3), 43 3,2),and (4, 2, 3, 2).

(4) Give a necessary and sufficient condition on w, x, y, and z that guarantees mysort to always
work correctly.

Problem 3

Let ¥y = {a,b} and X = {t,f}. For a word w € X}, we write |w| for the length of w. We also
write € for the empty word (i.e., the word of length 0). For a word w € &}, we define the function
fw €] = X5 by:

fu(W) = {21 2w € T3 |

t if v = wwv for some u,v € £ such that |u| =i ~1
f otherwise

for each i € {1,...,|w|}}.

P =

In other words, f,,(w') is the word obtained from w' by replacing the start position of each subword
that matches w with t and any other position with f. For example, faa(baaab) = fttff and
f<(abbab) = ttttt. Furthermore, we extend the function f, to the function f* that maps a
language over X; to a language over X3 by the following definition:

fu(L) = {fu(@) | w' € L}.

For example, f3,({(abb)” | n > 0}) = {(t££)" | n > 0}.
Answer the following questions.

(1) Compute fypa(babababa).
(2) Express f%.(X}) by using a regular expression.

(3) Suppose that a word w € £} (where |w| > 0) and a deterministic finite automaton A =
(Q,%1, 0,90, F) are given, and that L is the language accepted by A. Here, Q, 6, o, F' are
respectively the set of states, the transition function, the initial state, and the set of accepting
states of A. Assume that the transition function § € Q x £; — Q is total. Give a non-
deterministic finite automaton that accepts fy (L), with a brief explanation. You may use
e-transitions.

(4) If the following proposition is true, then give a proof sketch (it suffices to show a pushdown
automaton that accepts f;,(L) or a context-free grammar that generates f* (L), with a brief
explanation). Otherwise, give a counterexample.

Proposition: “For every word w € X}, if L C X} is a context-free language, then f%(L) is
also a context-free language.”

Problem 4

Answer the following questions on computer architecture.

(1)

(2)

3)

(4)

When the instruction j may use the result generated by the instruction i, we say there is
a data dependency from the instruction j to the instruction 4, and write j — i. Give all
data dependencies in the program below. The behavior of each instruction is described
88 a comment (the description after #) in the program. The processor which executes the
program has 32 registers from x0 to x31, and x0 is the zero register that always keeps the
value 0. In the comment, we represent a memory access to the address addr on the memory
as “memory [addr]”.

instruction 0) addi x3, x0, 64 # x3 <- x0 + 64

instruction 1) addi x4, x0, O # x4 < x0+0

ingtruction 2) addi xb, x0, O # x6 <- x0 + 0

instruction 3) Loop: 1w x6, 0 (x4) # x6 <- memory[x4 + 0]

instruction 4) add x5, x5, x6 # x5 <- x5 + x6

instruction 5) addi x4, x4, 4 # x4 <- x4+ 4

instruction 6) blt x4, x3, Loop # if x4 < x3, goto Loop

instruction 7) sw x5, 4096 (x0) # memory[x0 + 4096] <~ xb6

Consider a 5-stage pipeline processor that issues up to one instruction per clock cycle. The

processor consists of 5 stages: instruction fetch (IF) stage, instruction decode and register
fetch (ID) stage, execution (EX) stage, memory access (MA) stage, and register write back
(WB) stage. The bit width of each register is 32. The processor has the instruction and
data memories that can be accessed in one clock cycle, and load-word 1w and store-word
sw instructions do not stall on the MA stage. If there is a load-use data hazard for 1w
instruction, the IF, ID, and EX stages are stalled for one clock cycle. The branch instruction
blt (branch if less than) stalls the IF and ID stages until the branch result is determined in
the EX stage. Thus, the processor does not fetch subsequent instructions for two clock cycles
after a branch instruction is fetched. Execution results in the EX stage and load results in
the MA stage are properly forwarded to the EX stage.

Explain what the load-use data hazard is. Explain also how load-use data hazards occur
when the program in question (1) is executed on the processor.

Calculate the number of clock cycles required for the execution of the program in question
(1) on the processor in question (2). Calculate also the average IPC (instructions per cycle)
up to two places of decimals.

Using the program in question (1) and the processor in question (2) as an example, explain
the mechanism and role of dynamic branch prediction.

