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Notice:
(1) Do not open this problem booklet until the start of the examination is announced.
(2) Answer the following 4 problems. Use the designated answer sheet for each problem.

(3) Do not take the problem booklet or any answer sheet out of the examination room.

Write your examinee’s number in the box below.

Examinee’s number | No.




Problem 1

Suppose that a set of real numbers A = {a1,as,--,a,} (n > 0) is given, where all the numbers

in A are different from each other. Assume that the only operations allowed for real numbers are

comparisons between two real numbers. You may use appropriate data structures when describing

algorithms below.

Answer the following questions.

(1)

(2)

3)

Describe an algorithm that finds the smallest number from A. The algorithm cannot use real
number comparison operations more than n times.

Describe an algorithm that partitions A into two sets, S = {a;|a; < 2} and L = {a;]a; > z},
for a given real number z. The algorithm cannot use real number comparison operations
more than n times.

Describe an algorithm that finds the & smallest numbers from A for a given integer k£ (0 <
k < n). The average-case time complexity of the algorithm must be O(k + n). It is not
required that the output of the algorithm is sorted.

Describe an algorithm that finds the median of A. The average-case time complexity of the
algorithm must be O(n). Here, the median of A is defined as the |21 |-th smallest number
in A, where |m| is the integer that satisfies m < |[m| < m + L.

Give the number of real number comparison operations required in the worst case for the
algorithm you described in question (4).



Problem 2

Suppose that d is a real number represented as a floating point number, where % <d<1,

and that we wish to compute an approximation of % by using only addition, subtraction, and
multiplication (i.e., without using a primitive instruction or library for division). Let f be the real
function defined by f(z) =1 —d.

Answer the following questions.

(1) Let y = pe(x) be the equation of the tangent line of the graph y = f(z) at z = £ > 0.
Express zo such that pe(2o) = 0 in terms of £ and d.

(2) Express the value of £ that satisfies o = & in terms of d, for z¢ in question (1) above.

(3) Construct an iterative algorithm which, given an initial approximation of % as an input,
iteratively improves the approximation of %. You may only use addition, subtraction, and
multiplication; you must not use other mathematical functions and operations such as divi-
sion. You need not show the condition for the convergence to :11-.

(4) Show the order of the convergence of the algorithm obtained in question (3) when the input
is sufficiently close to %.



Problem 3

Consider a processor that executes every instruction in one clock cycle with no stall, excepting
load/store instructions. There is a cache memory between the processor and a main memory. In
case of a cache hit for a load/store instruction, it takes two clock cycles to complete the instruction.
In case of a cache miss for a load/store instruction, it takes 100 clock cycles to complete the
instruction.

Answer the following questions.

(1) Suppose that, in the execution of a program on the processor, 20% of the executed instructions
are load /store instructions, and the average cache hit rate is 95%. Calculate the average IPC
(instructions per cycle) up to two places of decimals.

(2) Describe briefly what the term “capacity miss” means in the context of a cache memory.

(3) Let A and B be N x N dense matrices. Assume that the following pseudocode for a mul-
tiplication of A and B is executed on the processor, and the average IPC is low due to
numerous capacity misses on the cache memory. Describe a programming technique to re-
duce capacity misses in a cache memory for achieving higher IPC. Explain why the technique
can reduce capacity misses by indicating a pseudocode. If necessary, you can introduce your
own assumptions, for example, on the matrix sizes and the capacity of the cache memory.

float a [N * N]; /*x Matrix A */
float b [N * N]; /* Transposed matrix of matrix B */
float ¢ [N * N]; /* Initialized to zero matrix */

int i, j, k;

for(i=0; i<N; i++){
for(j=0; j<N; j++){
for(k=0; k<N; k++){
cl[i*N + j] += ali*N + k] * b[j*N + kJ;
1}

(4) It is known that a W-way set-associative cache memory (W > 1) often achieves a better
cache hit rate than a direct-mapped cache memory with the same capacity. Explain why.



Problem 4

Let X be a finite alphabet (i.e., a finite set of letters). For w;, wy € £*, we write w) - wo for the
concatenation of wi and wsy, and write € for the empty sequence. For a map f € ¥ — X%, we define
f* € &* — Z* inductively by f*(¢) = € and f*(aw) = f(a) - f*(w) for any a € ¥ and w € &*. For
example, if ¥) = {a,b} and f; € £; — 7 is the map defined by fi(a) = ab and f1(b) = a, then
fi(ab) = aba. For a language L C ©* and a map f € & — T*, we define f~1(L) C T* by:

FHL) ={weD"| f(w) € L}.

For example, for ©1 and f; above, fi~({a,b, aba}) = {b, ab}.
Answer the following questions.

(1) Let 9 be {a,b,c} and fo € ¥ — X% be the map defined by fa(a) = ab, fo(b) = ba, and
f2(c) = a. Compute f2~({c, aba, abba}).

(2) Let X9 and f3 be those of question (1). Let Ly = {(ab)™a | n > 0} = {a, aba, ababa, abababa, . . .}.
Express the language fo 7 (L2) by using a regular expression.

(3) Suppose f € & — *, and A = (Q, %, 6, qo, F') is a deterministic finite automaton, where
@, 9, go, and F' are respectively the set of states, the transition function, the initial state, and
the set of final states of A. You may assume that the transition function § € @ x ¥ — @
is a total function. Let L£(A) be the language accepted by A. Give a deterministic finite
automaton that accepts f~1(L(A)).

(4) Prove the correctness of your answer for question (3) above.



