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Problem 1

Given two n-dimensional integer vectors z and y, let us write z = y if we have z; = y; (mod 2)
for each ¢ € [1,n]. Here z; and y; denote the i-th elements of the vectors = and y, respectively.
Likewise, given two n x n integer matrices A and B, we write A = B if we have a;; = b;; (mod 2)
for each 4,5 € [1,n]. Here a;; and b;; denote the elements in the i-th row and the j-th column of
the matrices A and B, respectively. _

In what follows, a vector all of whose elements are either 0 or 1 is referred to as a ‘0-1 vector’. A
vector each of whose elements is chosen from 0 and 1, with equal probabilities and independently
from the other elements, is referred to as a ‘random 0-1 vector’. The zero vector (i.e., the vector
all of whose elements are 0) is denoted by o; and the zero matrix (.e., the matrix all of whose
elements are 0) is denoted by O.

Answer the following questions.

(1) Let z € {0,1}3 be a random 0-1 vector. Derive the probability with which
011
101 ]|z = o
110 '

holds.

(2) Let A be an n X n integer matrix that does not satisfy A = O, and z € {0,1}" be a random
0-1 vector. Prove that the probability with which A - £ = o holds is no greater than 1/2.

(3) Let A, B and C be n x n matrices that do not satisfy A-B = C, and z € {0,1}" be a random

0-1 vector. Prove that the probability with which A- B -z = C - z holds is no greater than
1/2.

(4) Show an O(n?) algorithm that: takes three nxn integer matrices A, B and C; always answers
“SATISFIED” if the condition A- B = C is satisfied; and answers “NOT SATISFIED”, with
a probability greater than 9/10, if the condition A - B = C is not satisfied.
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Problem 2

Let N={0,1,2,...} denote the set of all nonnegative integers.

Let A = (Q,%,6,q0, F) be a deterministic finite automaton (DFA). Here Q is a finite set of
states; T is a finite alphabet; §: Q@ x ¥ — Q is a transition function; go € @ is an initial state; and
F C Q is the set of accepting states. In what follows we let ¥* denote the set of finite words over
T (that is, Z* = |J,cny Z"), and & denote the empty word.

Let us consider the following construction that minimizes DFAs. We define a sequence Ry, R1, Rz ..
of binary relations over @ (hence R, C @ x @ for each n € N), in the following inductive way.

Ry = QxQ Ry = 2(Rn) (t)
Here @ is the function that, given R C Q x Q, returns the following binary relation ®(R) C Q x Q.

(9,4") € ®(R) <= (qu@qIEF; )

and for eacha € B, (8(g,a), 6(¢,a)) €ER .
Answer the following questions.

(1) Let a DFA A be the one depicted below. Describe the binary relation R, for each n € N.
Here ¥ = {0, 1}, and a double circle ® designates an accepting state.

0 0 0
@— (=@

(2) It is straightforward to see that the function ® is monotone, that is, R C R’ implies ®(R) C
®(R’). Use this fact, and the fact that Ry is the greatést binary relation over @, in showing
the following: the sequence Ry, R1, Ry ... defined in (1) satisfies

Ro 2 R 2 Ry 2 -+ . ®
(3) Let Ry, be the limit [V, Rn of the descending chain (}). Answer whether the chain (i)

reaches its limit within finitely many steps, that is, whether there is a nonnegative integer
n € N such that R, = Rp,+1 = Rp42 = --- = R,,. Give a proof or a counterexample, too.

(4) We extend the transition function d to finite words and define the function 6*: @ x Z* — Q
by: for g € @, a € £ and w € T,

6*(g,¢) = q , 0*(g,aw) = 6*(6(q, a), w) .
Prove, by induction, that the following holds for each integer n such that n > 1.

If two states q,q’ € Q satisfy (g,q’) € Ry, then for any word w € £ ! of length
n — 1 we have

*(q,w) EF < & (d,w)eF .
(5) Let = be the binary relation between states that they “accept the same language.” That is,
(¢d) e~ <= (foreachwordw € Z*, ¢&*(q,w)€F < 6*(¢,w)€eF)
Prove that, between the two binary relations R, and =, we have inclusion R,, C =.

(6) Prove that the converse holds, that is, ~ C R,,. Here you can use that ® is monotonic. You
can also use the following fact (that is easily verified): between the two binary relations =
and ®(=), we have inclusion =~ C &(=).
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Problem 3

Genes, i.e., genetic information of an organism, are contained largely in the autosomal chromo-
somes in its cells. In a cell, a pair is formed by one autosomal chromosome derived from the father,
and one derived from the mother. A cell in an organism has a constant number of such pairs
of autosomal chromosomes. In a pair of autosomal chromosomes, the origin of each autosomal
chromosome (that is, whether it is derived from the father or from the mother) does not cause any
difference in the function of the genes.

When organisms procreate, one autosomal chromosome from the father’s pair is randomly chosen
(with equal probabilities) and is delivered to the child. The same occurs from the mother to the
child; and the resulting two autosomal chromosomes form the pair of the child.

Let us now imagine a species, each member of which has a certain autosomal chromosome that
includes a certain gene that is either of the type A or of the type a. These types are called alleles
in genetics. Let us focus on this specific gene in what follows.

It follows that genotypes, i.e., possible patterns of the gene of each member of the species, are
the following three: two A’s; one A and one a; and two a’s.

Answer the following questions.

(1) Give the probability with which the genotype of a child is AA, assuming that the genotypes
of its parents are both Aa.

(2) Assume that the genotype of a child is aa and that of its father is Aa. Assume further
that, on each of the two autosomal chromosomes of the mother, the alleles A and a appear
independently from each other, with the probabilities 2/3 and 1/3, respectively. Give the
genotype of the mother that is most likely.

Consider a random mating population that is large enough, in which the mating between a male
and a female occurs randomly. Suppose that there is no overlap between different generations,
no migration, or no mutation, in the population. Suppose also that an allele (A or a) appears
independently from each other in a pair of autosomal chromosomes, in each generation (including
the O-th one). Let us express the frequencies of having alleles A and a after the birth of the n-th
generation by p, and gy, respectively. Note here that p, + g, = 1. It follows that the frequencies
of having three genotypes—AA, Aa and aa—are p2, 2p,qn, and g2, respectively.

Answer the following questions. '

(3) Consider a situation in which having the allele a is disadvantageous in survival. For each of
the three genotypes AA, Aa, and aa, let us define the probability of survival until an organism
becomes adult and procreates (the probability is called fitness) by 1, 1 — s, and 1 — 2s,
respectively. '

Concerning the frequency qn+1- of having the allele a after the birth of the (n + 1)-th gener-
ation, express gn — qn+1 using ¢, and s.

(4) For each of the genotypes AA, Aa, and aa, let their fitness be 1, 1, and 0, respectively.
Assume that the frequency of the allele a is 1/100 when the 0-th generation is born. Give
the minimum of n such that the frequency of the allele a is no greater than 1/10000 after
the n-th generation is born.
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Problem 4

Consider a system in which processes p;, po, - . . , par Operate using some of resources 71,72, ..., TN
We assume the following.

e Each process p; needs to simultaneously use n; resources in order to complete its task.

e Resources get occupied but they do not get consumed. That is, even if a process p; operates
using a resource r;, another process py can use the same resource r; after p; completes its
task.

e Resources r1,72,...,7n5 are all of the same kind. That is, only the number of resources
matters to each process. '

e It is prohibited that two processes use the same resource at the same time.

Answer the following questions.

(1) Let M = N =2 and n; = ng = 2. Describe an example of deadlock that may occur in this
system. Describe, in particular, what timing of assignment and release of resources leads to
deadlock.

(2) Describe an example of a technique that prevents deadlock in the system in Question (1).
Discuss restrictions and disadvantages of the technique, if any. '

(3) Let M =3, N =4 and n; = np = ng = 2. Answer whether this system exhibits deadlock.
Explain why.

(4) Let M, N be arbitrary integers that are no less than 1; and assume that 1 < n; < N holds
for each i € [1, M]. Let us define n = n; + ng + --- + npr. Give, in terms of M, N, the
maximum value of n for which the system is guaranteed not to exhibit deadlock for each
choice of ny,...,np. Explain why.

11
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Problem 1

Consider the pattern recognition problem of classifying a d-dimensional real vectorial pattern
z € R? into one of the two classes y = +1,—1. For training a classifier, suppose that n training
samples

{(a:,-,yi) | z; €RY, y € {+1,-1}, i = 1,...,n}

are provided, where (z;,y;) means that the pattern x; belongs to the class y;.
Answer the following questions.

(1) Among the n training samples, let n, and n_ be the numbers of patterns in the classes +1
and —1, respectively. Find the mean vector ¢ of the ny patterns in the class +1, and the
mean vector c_ of the n_ patterns in the class —1.

(2) Consider the classifier that assigns a sample x to the class +1 if ||z — e || < ||z — e—||, and
to the class —1 if [jz — e4|| > ||® — c—||. Here || - || denotes the Euclidean norm. Give an
equation for the boundary between: the region to which the patterns classified into the class
+1 belong; and the region to which the patterns classified into the class —1 belong.

For a parameter w € R%, consider the linear classifier that assigns a sample  to the class +1 if
w'x >0, and to the class —1 if w'« < 0. Here (-)T denotes the transpose. Let us call the value
y;w ' @; the margin for the i-th training sample (z;, y;). Then the condition for this linear classifier
to correctly classify the pattern @; into the class y; can be expressed, in terms of the margin, as
yi'wTa:,- > 0.

Answer the following questions.

(3) When the linear classifier shown above does not correctly classify the pattern x; into the
class y;, let us update the parameter w by

Whew = W + Yi®; .

Prove that this parameter update does not decrease the margin for the i-th training sample
(3, i)- '

(5) When the linear classifier shown above does not correctly classify the pattern z; into the
class y;, let us update the parameter w by

Wpew = argmin [Ilw' —w)?+(Q1- y,-'w'T:ci)2] )
wl

Solve this optimization problem and obtain wnpew explicitly.
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Problem 2

Let N be the set of all nonnegative integers. Let @ be a set of states defined by @ = Nx N x N,
and let a transition relation — on @ be defined as follows.

(a,b,¢c) — (a—1,b—1,c+2) (fa>0and b>0)
(a,b,¢) — (a+2,b—1,c—1) (if 5> 0 and ¢ > 0) (1)
(a,b,¢) — (e - 1,b+2,c—1) (if c> 0 and a > 0)

Let —* denote the reflexive transitive closure of —.
Answer the following questions.

(1) Enumerate all states ¢ € @ such that (1,2,3) —* g, and draw a state transition graph.

(2) A state (a,b,c) is called a deadlock state if there exists no state q such that (a,b,c) — q.
Give a necessary and sufficient condition for a state (a, b, c) to be a deadlock state.

(3) Give a necessary and sufficient condition for a state (a, b, c) to have a deadlock state g such
that (a,b,c) —* q.

(4) Assume that, at each state (a,b, c), one out of the three transitions defined in the above ()
is chosen to take place, with the following probabilities.

(a,b,c) — (a—1,b—1,c+2) with the probability ab/(ab + bc + ca)
(a,b,c) — (a+2,b—1,c—1) with the probability bc/(ab+ bc+ ca)
(a,b,c) — (a—1,b+2,c—1) with the probability ca/(ab+ bc+ ca)

Now let an initial state be (1,2,3), and consider repeating the above probabilistic transitions
for sufficiently many times. Compute the probability with which, after such transitions, the
current state is either (1,2,3), (3,1,2) or (2,3,1).
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Problem 3

Let ¥ be a finite set of characters. Let S = {w;,ws,...,wp} be a set of strings over X; we
consider representing S on a computer and solving its membership problem. That is, given an
input string w, we would like to answer “yes” if w € S, and “no” if w € S. Here let m be the
number of characters (i.e. the size of I); and £ be the average length of the strings wy, we,...,wn.
We assume that the average length of an input string w is ¢, too. Recall that n is the number of
strings in the set S.

In case you need other parameters answering the questions below, introduce suitable variables for -
those parameters and use them in your answers. In illustration of your answers, use the following
set Sp as an example: Sp = {CAT, CAP, CAPE, REASON, RAINBDW}

Answer the following questions.

(1) A naive approach is to represent the set S as a linked list of basic string objects (i.e. arrays
of characters). Answer the amount of memory needed, and the average complexity of the
membership problem, in this setting. Give a brief explanation of your answer.

(2) Let us now consider representing the set S using hashing (with open addressing). Answer the
amount of memory needed, and the average complexity of the membership problem. Give a
brief explanation of your answer; you can choose and fix further details, like the definition of
a hash function.

(3) Let us consider representing the set S using a binary search tree. Here each node of the tree
stores a string; and strings are compared with respect to the lexicographic order. Answer the
amount of memory needed, and the average complexity of the membership problem. Give a
brief explanation of your answer.

Illustrate the data structure that represents the above example So. Assume here that the
tree is constructed by inserting each element of Sp in the order shown above.

(4) A trie is a tree structure that is often used to represent a set of strings. In a trie, one path
from the root to a leaf corresponds to one string; and each internal node has an array, of size
m (the number of characters), that stores pointers to its children nodes.

Answer the amount of memory needed, and the average complexity of the membership prob-
lem, in this setting. Give a brief explanation of your answer. Illustrate the data structure
that represents the above example Sg.

(5) One potential disadvantage of using a trie is that, in case £ >> n, memory usage can be
excessive. Describe a countermeasure, and explain how it works with an example.

(6) Another potential disadvantage of using a trie is that, in case m is large, memory usage can
be excessive. Describe a countermeasure, and explain how it works with an example.
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float A[N] [N], BIN][N], CIN][ND;
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for (i=0; i< N; i++)
for (k=0; k< N; k++) {
float a_ik = A[i] [k];
for (j=0; j< N; j++) {
float bkj = B[k][jl;.
C[il [j] += a.ik * b.kj;
}
}

Xryyiaky FROFBEICEB\WTIE, BFA, B, ClicXT B F— 977%1@&%%x,%®@
DF—F T 7 RARMET7 29 FIZOVTIIREZIL W,
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Problem 4

Consider the following situation on cache. The cache has fixed-length block size of L bytes, and
is W-way set-associative or direct-mapped (i.e. W = 1). Assume write-back cache with the LRU

replacement policy.
We consider multiplication of two N X N matrices in this problem. The matrices are declared

in C language as follows.
float A[N][N], BIN][N]l, CIN][N];

Here the size of float is 4 bytes, the matrices A, B, and C are allocated to contiguous areas of
memory, and the format is row-major order (that is, the element that follows A[0] [0] is A[0] [1]).
Assume that the address of the first element of A is aligned to the block size L. The computation
(called “matrix multiplication” hereafter) is the following.

for (i=0; i< N; i++)
for (k=0; k< N; k++) {
float a.ik = A[i] [k];
for (j=0; j< N; j++) {
float bkj = B[k][j];
Cli]l [j] += a_ik * b _kj;
}
y

In calculating cache hit ratios, only the data access to the arrays A, B and C should be taken into
account. Disregard access to the other data and instruction fetch.
Answer the following questions.

(1) Describe briefly why cache can accelerate computation in general.

(2) Assume that the cache capacity is 8192 bytes, L = 64 and W = 4. Calculate the cache hit
ratio (approximately) in matrix multiplication with N = 512.

(3) Next, assume that the cache capacity is 2048 bytes, L = 64 and W = 1. Calculate the cache
hit ratio (approximately) in matrix multiplication with N = 512.

(4) Assume the same conditions as Question (3). Describe one programming technique that
speeds up the matrix multiplication, and explain the speed-up effect quantitatively, for ex-
ample by calculating the cache hit ratio. (You can introduce your own assumptions, if you
want, for example on the latencies and the bandwidths of the main memory and the cache.)
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