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Problem 1

Consider a transformation from the tetrahedron T to the polyhedron P by applying a sequence
of two operations:

Operation A: adds an edge and a vertex.
Operation B: adds an edge and a face.

as illustrated in the following figure. Note that positions of vertices can be freely changed during
the transformation and should not be counted as operations. Answer the following questions.

Tetrahedron T Polyhedron P Operation A Operation B

(1) Count the number of the vertices v, the number of the edges e, and the number of the faces
f of the polyhedron P. Show that they satisfy

v—e+ f=2. 1]

(2) Determine a and b, which are the numbers of applications of Operations A and B, respectively,
to transform the tetrahedron T to the polyhedron P.

(3) Let us consider a transformation from a tetrahedron to a polyhedron having v vertices, e
edges and f faces, using a applications of Operation A and b applications of Operation B.
Determine M, a 3 x 2 matrix satisfying the following equations.

v 4
a
e |[=|6 |+M < )
b
f 4
(4) Show that all possible combinations of the number of the vertices v, the number of the edges

e, and the number of the faces f of a polyhedron that satisfy Eq. [1] (with restriction of
f > 4) can be composed from a tetrahedron by applying the above two operations only.
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Problem 2

Consider a sequence A[l..n| = (a1, as,...,a,) of n real numbers, where n > 2. Let M AX(i, )

denote the maximum number in the subsequence Ai..j] = (as, Git1, ..., a;) of A.

Answer the following questions.

(1)

Show an O(n)-time algorithm (I) that calculates M AX (i,7 + 1) for all integers ¢ such that
1 <i<n—1. Also show an O(n?)-time algorithm (II) that calculates M AX (i,i +n/2 — 1)
for all integers i such that 1 <i<mn—n/2+ 1.

Let r be an integer that satisfies 1 < r < n/2. Assume that we have calculated and stored
all the MAX (i,i + r — 1) values for all integers 7 such that 1 < i < n —r + 1. Show an
O(1)-time algorithm that calculates M AX (¢, m) for any pair of integers ¢, m that satisfies
1</<m<nandr<m-—~¥{<2r.

Assume that we have calculated and stored all the M AX (i, i+42* — 1) values in table T for all
pairs of integers 4, k that satisfy 1 <i <n—2% 41 and k& > 0. Show an O(1)-time algorithm
that calculates M AX (i, j) for any pair of integers , j that satisfies 1 <i < j < n, using 7.

Show an algorithm that computes the table T" in question (3). Show also the computational
time complexity of the algorithm.

Show an O(n)-time preprocessing algorithm for the sequence A[l..n] that enables O(logn)-
time computation of M AX(i,j) on the sequence A[l..n| for any pair of integers i,; that
satisfies 1 <i < j < n.
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Problem 3

Let X be a finite alphabet. For a language L C >*, we define a binary relation Ry, as follows.
For z,y € ¥*, we define xRpy if xz € L <= yz € L for all z € ¥*.

Answer the following questions.

(1) Prove that Ry, is a right-invariant equivalence relation, that is, the following four statements
hold.

(a) For any © € ¥*, xRpx.
(b
(c

(d) If zRpy, then xzRpyz for any z € ¥*.

For any x,y € ¥*, if  Rpy, then yRpx.
For any x,y,z € ¥*, if Ry and yRyz, then xRy z0

)
)
)
)

(2) Let L be so that the number of the equivalence classes of Ry, is finite. We define a deter-
ministic finite automaton My = (Qr, %, 5L,q0L, Fr) by the following. Here @y, is the set of
states, dr, is the state transition function, qé is the initial state, and F7, is the set of accepting
states. [x]r denotes the equivalence class of Ry, containing z € ¥*.

e Qr={l[z] |z ex*}.
e 61([z]r, a) = [za]L, where z € *,a € .
* gy = [ele-

FL:{[x]L\xGL}.

(a) Prove that the above transition function 7, is well-defined, that is, it does not depend
on the choice of a representative x of [x]f.

(b) Prove that the language L is accepted by the automaton M.

(3) Prove that, if L is a regular language, then the number of the equivalence classes of Ry, is
finite.
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Problem 4

Consider a combinatorial logic that computes addition of two n-bit unsigned integers. Let A
and B be the inputs, and A; and B; (1 = 0,1,...,n — 1) be their ith bit, respectively. Let S be
the n + 1-bit sum and S; (i = 0,1,...,n) be the ith bit. That is,

n—1 n—1 n n—1
=0 =0 1=0 1=0

Answer the following questions.
In questions (3), (4) and (5), use AND, OR, NOT, XOR gates to design logic circuits, and draw
circuit diagrams without explaining the derivation.

(1)

(2)

Conduct the following addition of unsigned binary integers.

0011000110100111 + 0110011001011010 1]

For each pair of integers 7, j such that 0 <4 < j <mn —1, let S; ; be the partial sum
J
Sij =Y 2"(Ay + By),
k=i
and P;; and G;; be the carry propagator and the carry generator, respectively, defined as
follows.

P 1 if §;; =21 —2
b 0 otherwise

1 if §;; > 27+
Gij = .
0 otherwise

Calculate P071, G(],l, P273, G273, P073 and G073 in the addition {1]

Given an integer 7 such that 0 < ¢ < n — 1, show a logic circuit that outputs P;; and G;;
from the inputs A; and B;.

Given a 3-tuple ¢, j, k of integers such that 0 < i < j < k <n — 1, show a logic circuit that
outputs P, and G, from the inputs F; ;_1, G;j—1, Pjx and Gj.

Given an integer ¢ such that 1 < ¢ < n — 1, show a logic circuit that outputs 5; from the
inputs Go,—1, A; and B;.

Discuss how to design a logic circuit that computes addition of two n-bit unsigned integers,
using logic circuits designed in questions (3), (4) and (5). Here, the logic circuit should
consist of logic gates with fan-in bounded by a constant, the gate level should be O(logn),
and the number of gates should be O(n).



