0180
Jubgdootdbootdbobtdtn
Jotdogugubootdd
ooy

Joool

00170 80 230
10:0000 12:30

oo

. 00000000 0b0oO0,0o0oboooooooOoo.
Do not open this problem booklet until the start of the examination is announced.

2.400000000. 000000000 DOO0OO00ODOODOOOOO.
Answer the following four problems. Use the designated answer sheet for each problem.

3. 0000000 ooboobooooooon.
Do not take the answer sheets and the problem booklet out of the examination room.

OO000oooooooooo.
Fill the following blank with your examinee’s number.

godo | No.




0o 1(1000).
0000000000000000000

() 0000000000000 0000O000O00O0O00D0DDO0DO0D0DDO00ODOO0O0oDOOO
guobbobgoobooooobobbobbooboobobboonbn

(2000000000000 00000OO0OO0O000O000OO0DO00O0OOOO0OOO0OOoOO
gdg

(3) 000000 0000000 000000000 TOOO0O0O0D0OD0O0O0O0ODOO0OO
O0000o0o0oooooolu{w}0000oooooooooo

(4 000000000 000ODO0C0O0OO0ODOOO00000O0O0000O0O0O0ODOOOUOOOO
googdooo

(a) (FaVyP(z,y)) — (VaIyP(y, x))
(b) (VaVy(P(z,y) — P(y,x))) — (=323y~(=P(x,y) V P(y,v)))

Problem 1(100 points).

Answer the following questions concerning the first-order logic.

(1) Is “the negation of a satisfiable formula is unsatisfiable” true? If you think that it is, then
give a brief proof. If not, then give a counterexample.

2 Explain l)rieﬂy what “an inference system is cmnplete” and “an inference system is sound”
mear.

(3) Consider a complete inference system «. Suppose that there is no proof of a formula v
from the set I" of formulas by using the inference system «. Prove that the set I' U {—} of
formulas is satisfiable.

(4) Give a sound and complete inference system for the first-order logic and explain it briefly.
Further, prove the following using it.

(a) (FaVyP(z,y)) — (VzIyP(y, x))
(b) (VaVy(P(z,y) — P(y,z))) — (mJzIy~(=P(x,y) V P(y,x)))



00 2(1000).
10000000000000200000000000000000000000000000
0000000000000000000000000000000000000000000
000000000000000000000

(1) k0000000000000 20000000000000D00000 10000000
00000000 2000000000000000 (merge)00O00O0OO

(2) merge 000 0000000 DOO02000000000000000 KkODDDODODOODOO
1000000000000 00D0 2000000000000 000 (mergesort) 000
gdg

(3) mergesort 100 0000000000 000000000 0O0OD KkODODODOODOOOO
2000b0oboubooobobogboboooboboooboboooobon

(4) mergesort 000 00 000000000000 DOOO 100000000DOOODOOOO
gbboodobdoo 1obobobooouabobobbobooobboobbbboobn
gogobouogouodgdgb 2000buoguooboooboobbooouoogooo
godbdoobobbl1bobbudobbd»nodogg

Problem 2(100 points).
Mergesort is an algorithm suitable for sorting sequences that are larger than a primary memory
and are stored in a secondary memory. Answer the following problems on mergesort algorithm.

When describing an algorithm, give an overview at the beginning, and then give pseudo-code for
it.

(1) Describe an algorithm (merge) for merging k sorted sequences of integers in the secondary
memory into one sorted sequence of integers in the secondary memory.

(2) Describe an algorithm (mergesort) for sorting k& unsorted sequences of integers in the sec-
ondary memory and generating one sorted sequence of integers in the secondary memory
using the above algorithm (merge).

(3) Estimate the number of accesses to the secondary memory when sorting k unsorted sequences
of integers with length n using the mergesort algorithm and explain it.

(4) One method to improve the efficiency of the mergesort algorithm is to sort each possible
partial sequence fitting in the primary memory by quicksort and to use a sorted partial
sequence as the unit for mergesort. Estimate the number of accesses to the secondary
memory using this method. Let m be the size of the primary memory to be used for
quicksort.



00 3(1000).
00000000000000000000000000000000

() 0000000000000 O0O0O0ODOO000D0D0DODODODODODODOO00ODOODOOO0O
gboboooooooboo

(2) 000000000 O0OODO0OO0OODOOOOOO0ODOODOOOO0O0ODOOOOOODOODOO
gboogbodgbbbobuoboobbooobbo

(a) DOOD
(b) 00000000
(c) 0000000

Problem 3(100 points).

Answer the following questions concerning optimization of code generated by a compiler.

(1) Describe and explain a method for eliminating unnecessary operations by locally scanning
the generated code without resorting to any data flow analysis.

(2) For each of the following optimization methods, describe and explain a data flow analysis

necessary for this and a code transformation scheme based on the information obtained from
the analysis.

(a) constant propagation
(b) common sub-expression elimination

(¢) dead code elimination



00 4(1000).
000000 oouuiboUUUdl Umutex_lockOmutexunlock U OO O OOOOOOONOO

e void mutex_lock(MID m)
MID(Mutex 00 0)000 mOO0OO0O0 MutexDOOOOOODODOOOODOOOODOOO
0000ddo0ddoooooObOOo0bD0obooO0o00ooObO0oDOooooDOooDoOoDooOooDOooo
O0000 MwexOOOOOOOOOOOOODOO

e void mutex_unlock(MID m)
MuwexOOO mOOOOO MuwexOOOOOOOOOOOOOUOOOOODOOOODOOOO
0000000000000 oooooooooooo

goooobooboon

() 000000000000 O00O0ODO0O0O0O0DOOO0O3000000000O0O0O00000
gogooboooguoooooooboogd

a VY4 N/ I
Process 1 Process 2 Process 3
1: mutex_lock(mtxA); 1: mutex_lock(mtxB); 1: mutex_lock(mtxC);
2: mutex_lock(mtxB); 2: mutex_lock(mtxC); 2: mutex_lock(mtxA);
/* 00 AO0O0BO /* 00 BOOO CO /¥ 00 cO0O0 AQ
oooooo =/ goooono =/ gooooo */
8: mutex_unlock(mtxB); 8: mutex_unlock(mtxC); 8: mutex_unlock(mtxA);
9: mutex_unlock(mtxA) ; 9: mutex_unlock(mtxB) ; 9: mutex_unlock(mtxC) ;
o AN AN %

(2) 00000000 O0O0OOOO0000OOOOOOO0OOOOO0OO

(3 ODoO0OoOUODOOO0OOU000OOOCOOO0O0OOO0ODOO0O0O0DOODOOOODOOOOOon
goon

(4) 0000000000 0ODODO000000O000DOD0O00O0OOO0ODO0O0O0O0ODOO0O0OOn
ooooooOoon
e MID waitFor(PID p)
pO00000000DOO mutex_ lockO OO OODOODODOOODOOOOOOOODO Mutex

gooooobooMIDOOoOoooooooobgooouobooo MIDOD oD 4D
goooo

e PID used(MID m)
mOO0O00O MutexOODOOOOOODOODODODODOODDODODOODOOODOOOOOO
O00PIDOCOOOOD) 000000 MwexODOODOOOOODODOOOODOOODO
godoob PIDOoOCODDOOOOOO



Problem 4(100 points).
Let us define functions mutex_lock and mutex_unlock to handle the mutual exclusion problem in
processes as follows:

e void mutex_lock(MID m)
It locks the Mutex object specified by m whose data type is MID (mutex object identifier). If
the object has been locked, the process waits for the object to be unlocked. As soon as the
object is unlocked, the process is resumed and tries to lock the object again.

e void mutex_unlock(MID m)
It unlocks the Mutex object specified by the m variable. If some processes have waited for
the object to be unlocked, those processes are resumed.

Answer the following questions.

(1) In the following program, deadlock may occur. Show the execution sequence of the three
processes that leads to deadlock.

4 N

Y4 ™

Process 3
1: mutex_lock(mtxC);
2: mutex_lock(mtxA);

Process 2
1: mutex_lock(mtxB);
2: mutex_lock(mtxC) ;

Process 1
1: mutex_lock(mtxA);
2: mutex_lock(mtxB) ;

/* Resources A and B
are exclusively usedx*/
8: mutex_unlock(mtxB);

9: mutex_unlock(mtxA);

-

AN

/* Resources B and C
are exclusively usedx*/
8: mutex_unlock(mtxC);

9: mutex_unlock(mtxB);

AN

/* Resources C and A

are exclusively used*/
8: mutex_unlock(mtxA) ;
9: mutex_unlock(mtxC) ;

/

(2) Rewrite the above program so as to prevent deadlock.
(3) Describe a method to prevent the deadlock of processes which share predefined resources.

(4) Write a program to detect whether a given process is in the deadlock state using the following

functions:
e MID waitFor(PID p)

It returns the MID of the Mutex object for which the process denoted by p is waiting

at the mutex_lock function. It returns 0O if the process is not waiting for any Mutex

object. Note that an effective MID does not have the zero value.

PID used(MID m)

It returns the PID (process identifier) of the process which has locked the Mutex object

denoted by m. It returns 0 if no process has locked the Mutext object. Note that an

effective PID does not have the zero value.



0180
Jubgdootdbootdbobtdtn
Jotdogugubootdd
ooy

Jooo ll

o170 80 230
14:000 16:30

oo

. 00000000 0b0oO0,0o0oboooooooOoo.
Do not open this problem booklet until the start of the examination is announced.

2.400000000. 000000000 DOO0OO00ODOODOOOOO.
Answer the following four problems. Use the designated answer sheet for each problem.

3. 0000000 ooboobooooooon.
Do not take the answer sheets and the problem booklet out of the examination room.

OO000oooooooooo.
Fill the following blank with your examinee’s number.

godo | No.




00 1(1000).
0000000000000000000000000000000000000 G=(V,E)0
00000000(u,v)00 (u,0) € EO0O0O0D0dw,w)00veVOODweVOOOOO0OO
000000000000000000

()000 GDO0000000veVOOO0000 (u,w) e EO0DODOI(u,w)+ dv,u) —
dv,w)>00000000000000

(2) 000 GOOOOOVOOOOODvO000O000s(v)0000000000000000
00000 (4,v) e EODOO0DDO0O00 l(u,v)+s(u)—s() 00000000 G000
000000G 0000000020 w,x000000000000G00000000
w,x0000000000000000

3) 000 G000 0weVOOOOOOODOOOOOOODOOODOODODOOODOOOOOO
gobago

(4000 GUOO0O0weVOODOODODDODDODODODODOUOODDOODODODUODODOODODweVDO
gbuoboooobuoboobob bbb oooboooooobogg

Problem 1(100 points).

Consider a strongly connected directed graph G = (V, E), which has negative-length edges, but
has no negative-length cycles. Let I(u,v) denote the length of an edge (u,v) € F, and let d(v, w)
denote the shortest path distance from vertex v to vertex w. Answer the following questions.

(1) Prove that the inequality [(u, w) + d(v,u) — d(v,w) > 0 holds for any vertex v € V' and any
edge (u,w) € E on the graph G.

(2) Assume that a value s(v) is attached to each vertex v € V on the graph G. Consider a
new graph G’ resulting from transforming G by replacing the length of each edge (u,v) € E
with {(u,v) + s(u) — s(v). Prove that the shortest path on the graph G’ between w € V' and
x € V is also the shortest path between w and x on the graph G.

(3) Describe an algorithm that computes the shortest path tree from a vertex v € V' on the
graph GG, and discuss the computational complexity of the algorithm.

(4) Given the shortest path tree from v € V, describe an algorithm that computes the shortest
path tree from another vertex w € V' (w # v) on the graph G, and discuss the computational
complexity of the algorithm.



00 2(1000).
0000010200000000000000100000010000000000000
0100000 (000)000 1/2000%0000000200000000 1/4000000
00 1/40000002000000040000000100000000 1/20000000
01/20000

(1)DDDDDDDiDD ca+00 00000000000 OO0OOOOOOOOyO00O00OnO
P11 P21

DDpijDDDDDD<
P12 P22

)DDDDD

(2) DOO0OOOODOOODOO

(3) 0000000000000 00000O0000000oUooOoO00O0O(ae+b)*000
gbobbbooobbbodaoon

Problem 2(100 points).

Consider a machine having two states, 1 and 2. The initial state is 1. At state 1, it outputs
character a and moves to (stays at) state 1 with probability 1/2, or it outputs character b and
moves to state 2 with probability 1/4, or it halts with probability 1/4. At state 2, it outputs b
and moves to state 1 with probability 1/2, or it halts with probability 1/2.

(1) pi; denotes the probability that the machine moves from state i to state j after outputting

a string belonging to the regular expression aa + b. Compute the matrix < P bz )
P12 P22

(2) Diagonalize the above matrix.

(3) Compute the probability that the output string (the string that the machine outputs after
starting at the initial state until it halts) belongs to the regular expression (aa + b)*.



00 3(1000).
0D000000000000000000000,000000000. 00

() 0000000 (boOoODO)0DOD0OO0OO0OO0ODOODO0D0DO0ODDODODDOODODOOODOO

(0100). 00r000¢00000000000p0000000. O
p—c|—r=0

00, 0ed000,00000000d00000O00 sOO0O0OO0O¢tOO0OO0OOOO
goog. O
s—=e+dt

gobogoboodib p=s0000¢t0000boooboobbOon0.ggggn e,
c,d0D0O00O0ODO.

OO00O000boooooouobUu ebb000 QU e,c, 000 d000OOODOOO.

oo QQUuibbOobooooooobooboboob. obo,goobbooboobbobooOob
O0000QUibb0bUOUOb0 e0OO0OOOODDOOUOODODDODODODODOObBLODOO
go.

00 o0000 z0y0000000000000,00e0 20000000000. O
000000000000 000000000000000.0000,00 00000
0000000000000000000. 00,000000000000000 00
0000000000.0e0000 0000 (0,0,2)000 (2e,9e,2)00 00000
0000000000000 00000 2, y0000.0000000000000000
00000 y0000 9, 0000 4mee 00000 .




Problem 3(100 points).
Answer the following questions on rendering a sphere by projecting the sphere onto a screen.

(1) Consider rendering a sphere on the screen by using the rendering algorithm called raytracing

(see Figure 1). A point p on a sphere of radius r about center point ¢ is given by [

lp—c|—r=0.

A point s on the line which passes through a point e with unit vector d is expressed by

using parameter ¢, and given by [
s =e+dt.

The intersection of the line and the sphere can be tested by checking the existence of ¢ that

satisfies p = s. Describe this condition by using e, ¢, and d.

(2) Assuming that the line intersects with the sphere, express the intersection point @ close to

point e by using e, ¢, and d.

(3) Calculate the unit normal vector of the sphere at point Q. Assuming that the sphere surface

reflects light as a mirror, give the reflection vector b at the intersection point @ when the

light is incident to the point with unit vector a.

(4) Consider the screen on the z-y plane, and the eye point e lying on the z-axis. The sphere

is projected onto the screen with the projection center being the eye point e. That is, the

projection is done by projecting the intersection points between the sphere and the lines

through the eye point on the screen. The whole sphere and the point e are placed on the

opposite sides of the screen. Let the coordinates of points e and ¢ be expressed as (0,0, z)

and (z., Ye, z¢), respectively. Calculate the x and y coordinates of the projected point of the

center ¢ of the sphere on the screen. Calculate the minimum and maximum values of the y

component, Y and Y.z, of the projected sphere.

Figure 1



00 4(1000).
DOOOOOOOOANDOOOOOROOOONOTOOOOOOOO0O0O00O0O00O0000O,1,2,
.,9,10,1100000000001100000 000000000000000000000
0000000000000000000000000000000000000000000
00O0ooo0o0o0oo0ooo.

gobobgddg
gogoo g

goob |bogobbobodaobd
gbodb j1gugoobobooobooooobon
oodg |10000boobogbgoobbo

(1) 000000000000 0000D00D000000 (State Diagram)0 00000000
goooooo

(2) D0O0O0DO0DO0O0OOOoOOoOooOOOoOoOO

(3) 0000000000 (000040 00000000000O12,13,14,15) 0000000
obooboooobobbb1l1o0obboobobbooobooooooboobooo

Problem 4(100 points).

Consider designing a synchronous counter specified below using AND, OR, and NOT gates, and
D-type flip-flops. The counter counts up as 0, 1, 2, ..., 9, 10, and 11. After 11, the counter returns
to 0, and counts up again. The designed counter can be either a binary counter or a Jonson
counter, but must not be a ring counter.

Specification of the input signals

Input signal Description
Clock A clock to a synchronous counter
Count When Count is 1, the counter counts up.

Otherwise, the counter holds its value.
Reset When Reset is 1, the counter is set to 0.

(1) Describe a state transition table and a state diagram. The state diagram can be either a
Mealy or a Moore.

(2) Design a synchronous circuit and show it as a circuit diagram.

(3) Modify the circuit so that when the counter enters unspecified state (for example, when 4
bit binary counter is used, 12, 13, 14, 15) due to some circuit errors, it does not return to
normal states unless the reset signal is asserted to 1.



