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Abstract

In view of the importance of prosody in human speech
communication, we are intensively working on how to generate
prosodic features in speech synthesis and how to utilize them in
speech recognition. As for the speech synthesis, we already
have developed a corpus-based method for synthesizing
prosodic features in the framework of the generation process
model of fundamental frequency contours. This fiscal year, an
improvement was realized in emotional speech synthesis by
including emotion levels in the input parameters of the
predictor of the model parameters. As for the speech
recognition, a new scheme of detecting fillers during
spontaneous speech recognition process was developed. When
a filler hypothesis appears during the decoding process of the
speech recognizer, a prosodic module checks morphemes,
which are hypothesized as fillers, to really be fillers from their
prosodic features and outputs the filler likelihood scores. When
the score exceeds a threshold, a prosodic score is added to the
language score of the hypothesis as a bonus. Experimental
results indicated that the proposed scheme could improve the
performance of spontaneous speech recognition.

1. Introduction

Communication through speech is the most basic way of human
communication, and therefore, a matured speech
communication technology is indispensable for the realization
of smooth communication between machines (computers) and
humans. Speech involves two aspects with rather different
features: segmental and prosodic ones. While the segmental
aspect is mostly represented by features on vocal tract shape
and types of sound source and play an important role in
realizing phone sounds, the prosodic aspect is mostly
represented by features on vocal folds vibration and play an
important role in the transmission of accent, intonation and
rhythm. Although both aspects should be well processed in
speech technologies, processing of prosodic features has rather
been neglected, especially in the speech recognition. Major
reasons of this situation will be that the prosodic features cover
temporal spans longer than those the segmental features do, and
are subject to change widely due to individuals, situations and
so on. These factors complicate the prosodic features, and thus
make the systematic works on prosody rather difficult. To
solve this undesirable situation, research works have been
conducted placing a major focus on prosody for the realization
of advanced speech technologies. Surely, our research works
cover those not related to prosody, such as adaptation of
acoustic and language models for robust speech recognition and
so on. Recently we have been conducting a series of works on
sound separation in less conditions; number of mixed sounds
(microphones) is smaller than the number of sound sources.
We incorporated several sophisticated methods, such as Hilbert
transformation, empirical mode decomposition, and so on, to
tackle with the difficult problems [1].  Although rather
preliminary, a scheme was developed for localizing moving
sources and separating them [2]. This technology is quite
important to realizing speech recognition in a realistic situation:

several people moving around while they are making

conversation.

As for the works related to prosody, the followings are the
major results obtained this fiscal year:

1. Corpus-based generation of fundamental frequency (Fj)
contours in the framework of the generation process model of
Fy contours (Fy model) [3]. The method predicts the model
commands using binary decision trees with inputs on the text
to be synthesized. Because of constraints by the Fjy model, no
serious degradation will happen in synthetic speech. Using
the method, emotional speech synthesis was realized.
Especially, better emotion was realized by taking emotion
levels for each bunsetsu (basic unit of Japanese syntax
consisting of content word(s) followed or not followed by
particles) into account.

2. Two-step generation of Fy contours of Standard Chinese with
tone nucleus model [4, 5]. The method is based on the
superposition of tone components on phrase components in
logarithmic frequency. The tone components are generated
by concatenating F, patterns of tone nuclei, which are
predicted by a corpus-based scheme, while the phrase
components are generated by a set of rules. Experiments of
F, contour generation showed that synthetic speech with high
naturalness was possible.

3. Detection of fillers in spontaneous speech recognition [6].
The method is to check the likelihood of a filler candidate in
speech recognition process being really filler from prosodic
features, and, if yes, adds a prosodic score to the language
score of the recognition hypothesis. A comparative
recognition experiment with and without the filler checking
process was conducted for 100 utterances of spontaneous
speech, which are included in the corpus of academic meeting
presentations of the Corpus of Spontaneous Japanese. Seven
fillers originally miss-recognized as non-fillers are correctly
recognized as fillers when the prosodic features are counted,
while no fillers originally recognized as fillers are wrongly
recognized as non-fillers.

4. Tone recognition of Standard Chinese using tone nucleus
model and neural network. The method recognizes tone types
of syllables in continuous speech of Standard Chinese using
five-layered perceptron. With inputs of prosodic features of
current and preceding/following syllables, 86.5 % of correct
recognition (including tone 0) was obtained. A slight
improvement was further realized by discarding transition
parts. The results are better than our method based on
representing prosodic features by hidden Markov models [7].

5. Realization of concept-to-speech conversion in a spoken
dialogue system on road guidance [8, 9]. The method
generates reply speech form the content to be conveyed to the
user from the system. To realize this concept-to-speech
conversion, a new scheme of sentence generation was
developed. It handles the concept in phrase units in a LISP
form and concatenates them to generate a sentence. Syntactic
structure is kept throughout the sentence generation so that it
can be reflected to the prosodic control during speech
synthesis. The prosodic control also takes account the
phenomenon observable in human conversation: focusing
words according to their novelty. The method was realized in

— 125 —



the road guidance system. Its trial use showed that a smooth
conversation between the user and the system was possible.
Because of the limitation of space, in the following sections,
works on 1 and 3 are introduced.

2. Corpus-based generation of F, contours for
emotional speech synthesis

Emotional speech synthesis has been conducted as a part of
work to realize various styles in synthetic speech, which is
necessary to increase the usability of spoken dialogue systems
in "real-world applications." We already have developed a
corpus-based synthesis of F, contours in the framework of Fj
model [9]. By predicting the model commands instead of F
values, a good constraint will be automatically applied on the
synthesized F|, contours; still keeping acceptable speech quality
even if the prediction is done somewhat incorrectly.

This fiscal year, we newly took the level of emotion into
account. By labeling the degree for each bumsetsu, and by
adding it as inputs to the ) model command predictor, a better
emotional control was realized in synthetic speech.

2.1. Prosodic corpus

Speech corpus used for the experiment was utterances of a
female narrator. She was asked to read the 503 sentences,
which are the same with those of the ATR continuous speech
corpus, in 3 types of emotion (anger, joy, sadness), and calmly.
After recording she was asked to mark the parts of sentences,
where she placed emotion specially. The current experiment
was done on "anger." In the experiment of Fy model parameter
prediction, 503 sentences were divided into two groups: 453
sentences for training and 50 sentences for testing.

2.2. Fy model parameter prediction

The parameters of F, model are predicted through the following
processes:

1. Prediction of phrase command.

2. Prediction of prosodic word boundary location.

3. Decision of accent types.

4. Prediction of accent command.

Processes 1, 2 and 4 are conducted using binary decision trees
(BDT's). The CART (Classification And Regression Tree)
included in the Edinburgh Speech Tools Library [10] was
utilized to construct BDT's. Stop threshold, represented by the
minimum number of examples per leaf node, was set to 40.
One BDT was constructed for each model parameter for the
processes 1 and 4. So predictors for these processes consisted
of plural BDT's. In the following subsections, phrase and
accent command prediction processes (processes 1 and 4) are
addressed, since the emotional level information is assumed to
be effective for these processes.

Information on the current bunsetsu in question and that on
directly preceding bunsetsu were included in the input
parameters for the phrase command predictor as shown in
Table 1. Punctuation marks of the text were not included,
because of the large variation according to writing styles. Since
the depth of syntactic boundary has a tight relation with the
phrase command, boundary depth code (BDC) between the
preceding and current bunsetsu's was added to the input
parameters. The last three parameters in the table were added
to count for the influence of the preceding phrase command on
the current phrase command. The category numbers in the
parentheses are those for the preceding bunsetsu and are larger
than those of the corresponding parameters of the current
bunsetsu by one to represent "no preceding bunsetsu." BDC
denotes the depth of the boundary between the current and
preceding bunsetsu's, and was obtained by a simple calculation

from the corresponding KNP code [11]. The input parameters
for accent command predictor were selected similarly.

Table 1. Input parameters for the F;, model parameter
prediction.
Input parameter Category
______________ Positioninsentence | 28
e Numberofmorae | 21(22)
____Accent type (location of accent nucleus) | 18(19)
. Numberofwords | 10(1)_
e Part-of-speech of the firstword | 14(15)
_______Conjugation form of the firstword | 19(20)
. Part-of-speech of the lastword | 14(15)
I Conjugation form of the last word | 16(17)_ ___
Boundary depth code (BDC) 20
___ Phrase command for preceding bunsetsu ___ | 2
Number of morae between the preceding

phrase command and the head of the current 25
___________________ bunsetsu | .

Magnitude of the preceding phrase command Continuous

We add emotion levels of the current and preceding
bunsetsu/prosodic-words into the input parameters of the phrase
and accent command predictors: 1 when speaker included
emotion specially, and 0 when not. To check the validity of the
emotional level for Fjy model parameter prediction, experiments
are conducted in the four conditions as shown in Table 2.

Table 2. Use of emotional levels in F, model parameter
prediction. Symbols "o" and "x" respectively indicate when the
levels are used and not used.

Prediction (OCr (i);i.ngl) Con. 1 Con. 2 Con. 3
Phrase X o X o
_command __ R S B
Accent < X o o
command

As an objective measure to evaluate the F, contour
generated using the predicted F\, model parameters, the mean
square error between the generated contour and the target
contour is defined as:

> (Aln Fy (1)
T 9

where AlnFy(t) is the Fy, distance in logarithmic scale at frame
¢ between the two F; contours. The summation is done only for
voiced frames and 7 denotes their total number in the sentence.
The results are summarized in Table 3, where average FyMSE
values are shown for 4 conditions listed in Table 2. A better
prediction was realized by taking the emotional levels into
account. The effect is larger for accent components as
compared to phrase components.

F,MSE = (1

Table 3. Average FoMSE's of F, contours generated using the
model parameters predicted in four different conditions.

Original Con. 1 Con. 2 Con. 3
_Close | 00696 | 00713 | 0.0692 | 0.0714
Open 0.0755 0.0750 0.0745 0.0742

2.3. Speech synthesis and evaluation

Two versions of synthetic speech were compared: one with F,
contours, which were generated by the original method
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(without emotional levels) and the other by the new method
(with emotional levels). Segmental features were generated
using the HMM-based speech synthesis toolkit [12].

Synthetic speeches for 20 sentences by the new method
(condition 2) and 10 sentences by the original method were
randomized and presented to 12 Japanese, who were asked to
check bunsetsu’s where they feel higher emotional levels than
other parts. The option of no bunsetsu with higher emotional
level was allowed. When the checked parts coincide with those
checked by the speaker (see section 2.1), even if they are partly,
they are counted as their emotional levels being correctly
realized in synthetic speech. When F;, contours are generated
by the new method, 92.7 % of bumnsetsu's with higher emotional
level in the original utterances are correctly perceived so in the
synthetic speech. The rate decreases to 78.2 % when Fj
contours are generated by the original method.

In order to evaluate how the designated emotion can be
conveyed by the new method, another listening test was
conducted. Each of 30 sentences was synthesized by both new
(condition 2) and original methods and the two versions of
synthesized speech were presented to 9 Japanese speakers.
They were asked to select the version, to which they felt the
designated emotion (anger, for the current experiment) clearer.
The version by the new method was selected in 79.3 %
probability. These results on the listening tests indicate the
validity of adding bunsetsu-based emotional levels in realizing
designated emotion in synthetic speech.

3. Detection of fillers in spontaneous speech
recognition

We have developed a new method of using filler information
for continuous speech recognition: to calculate the likelihood of
fillers appearing in the decoding process of speech recognition
using prosodic features (prosodic module), and, if the
likelihood is high, increase the score of the hypothesis with the
fillers. As for the prosodic module, a neural network was
adopted, though other options were also possible.

3.1. Configuration of the method

Baseline speech recognition engine is Julius, developed as an
open-software for continuous speech recognition. The engine
conducts quick coarse search (1% pass search) first and then
conducts detailed search backwoods (2™ pass search) [13]. The
1* pass is the frame synchronous beam search with (morpheme)
bi-gram language model and the 2™ one is N-best stack
decoding search with (backward) tri-gram language model.
When calculating the likelihood of hypotheses, the weight of
the language score to the acoustic score was set to 8.0
throughout the current experiment. The prosodic module
calculates probability of a morpheme being a filler (henceforth,
filler likelihood score). Although the module can calculate the
filler likelihood scores for all the morphemes included in the
input utterance, in the current method, it needs to calculate only
for those hypothesized to be fillers in the 2™ pass search
process. The language score is changed depending on the result
of the prosodic module. Our preliminary experiment showed
that reducing the language score when the likelihood score
being low degraded the final recognition rates. Taking this into
account, a certain value (bonus) is added to the language score
only when the filler likelihood score exceeds a threshold.
Henceforth we call this value as the prosodic score. Since there
is no clear difference in the recognition performance, whether
the prosodic score is changed according to the filler likelihood
score or is kept constant, we set it to a constant value. The
threshold and the prosodic score are respectively set to 0.5 and
5 in the experiments shown in section 5. Surely, if we reduce

the prosodic score, the number of false filler detection may
decrease, but the number of filler recovery by the prosodic
module may also decrease.

3.2. Speech material

The speech material used for the experiments is 100 utterances
(including one or more fillers) by 7 males and 6 females, which
are selected from the corpus of academic meeting presentations
included in the Corpus of Spontaneous Japanese (CSJ) prepared
under a national project [14]:
http://www?2 .kokken.go.jp/~csj/public/index.htm/

In the original corpus, all the utterances of each speaker are
recorded in a file. So, we first segmented it into utterances and
then selected 100 utterances so that each of them includes one
or more fillers, and does not include any restatements or coughs.
The numbers of fillers in the 100 utterances sorted in the order
of frequency are, 185 /eH/, 82 /e/, 16 /sonoH/, 14 /ma/, 13
/maH/, 12 /eQto/, 11 /ano/, etc. (Symbols "H" and "Q" mean
elongation of previous vowel and gemination, respectively.)

3.3. Prosodic module

The prosodic module is constructed as a 5-layered perceptron
with 3 middle layers, each of which has 20 units. These
numbers were decided through some preliminary experiments.
The input and output layers have 10 and 1 units, respectively.
One unit of input layer accepts each of 10 input parameters.
The output layer unit outputs the filler likelihood in the range
between 0 and 1.

Figure 1 shows an example on how fillers appear in the F
contour of utterance. It is clear that they have low and level
contours. Taking this feature into account, four Fj-related
parameters such as F, range, F, gradient, and so on are
included into the input parameters. Lengths of immediately
preceding and following silences are also included in the input
parameters, because they frequently co-occur with fillers as
shown again in Fig. 1. In the current method, silences are
detected simply searching periods whose waveform amplitudes
do not exceeds a threshold.
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Figure 1. Waveform (upper panel) and F;, contour (lower

panel) for the utterance "eQto dewa tsugi ni eQtoH oNso
([Filler] Then, next [Filler] a phoneme...)" by a male speaker.
The underlined morphemes are fillers. The circled parts of F
contour are those corresponding to the fillers. "sp" means a
short pause.

An experiment of filler detection was conducted for the 100
utterances.  First, all the utterances are segmented into
phonemes by the forced alignment, and then their Fy's were
extracted in order to calculate the input parameters. Twelve
utterances were discarded where the input parameters were not
properly extracted because of errors in segmentation and/or
pitch extraction. Then, the rest 88 utterances (of 6 male and 6
female speakers) were divided into 76 utterances for training
and 12 utterances (one utterance from each of 6 male and 6
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female speakers) for testing. They include 306 fillers (in total
of 2846 morphemes) and 39 fillers (in total of 420 morphemes),
respectively. When morphemes with filler likelihood scores
larger than 0.5 are assumed to be fillers, 29 fillers are correctly
detected out of 39 fillers, while 13 fillers are incorrectly
detected out of 381 non-filler morphemes.

3.3. Experiment

Speech recognition experiments were carried out for the 100
utterances using two versions of recognizer: one with prosodic
module (proposed recognizer/method) and the other not
(baseline recognizer/method).  As explained already, the
baseline recognizer is Julius for the spontaneous speech
provided by the CSJ project. The acoustical (phone hidden
Markov) models were trained using 486 hours of academic
meeting presentations by 2496 people included in the CSJ
corpus. The 100 utterances are included in these training
speech samples. The language models were trained using
transcriptions of 2592 lectures, which include 6.6 x 10°
morphemes.

The utterance "kasetsu ga e shiji sa re mashi ta (The
hypothesis was accepted.)," was recognized as "kasetsu ga
ninshiki (recognize) sa re mashi ta." by the baseline recognizer,
while it was recognized as "kasetsu ga e shi (do) sa re mashi ta"
by the proposed recognizer. It is clearly shown filler /e/
(underlined in the example) is correctly recognized in the
version with the prosodic module. Improvements at non-filler
morphemes are also observable in the utterance "e kochira ga
¢H hana no aru (This one is with a nose...)," which was miss-
recognized as "e kochiragawa (this side) eH hana no aru" by the
baseline recognizer. It was correctly recognized when the
prosodic module was introduced.

Table 4 summarizes changes in the recognition results
caused by the introduction of the prosodic module. Seven
fillers, miss-recognized by the baseline method as non-filler
morphemes, are correctly recognized by the proposed method,
while no fillers correctly recognized by the baseline method are
miss-recognized by the proposed method. In the 100 utterances,
a total of 389 fillers are included and 349 of them are detected
by the baseline method. Therefore, 356 fillers are detected by
the proposed method. Three non-filler morphemes correctly
recognized by the baseline recognizer are miss-recognized by
the introduction of the prosodic module. These errors can be
avoided by decreasing the prosodic score, but improvement in
filler detection also degraded. This type of miss-recognition is
tightly related to the (sophisticated) search algorithms of the 2"
pass, such as: when a hypothesis survives beyond a threshold,
hypotheses with shorter lengths are terminated. Because of
these algorithms, the best hypothesis selected by the 2™ pass is
not guaranteed to be really the best one. It is confirmed that all
the three morphemes miss-recognized by the introduction of the
prosodic module are correctly recognized in the "really" best
hypotheses.

Table 4. Numbers of morphemes where the recognition results
are changed by the introduction of the prosodic module.
"Baseline" and "Proposed" indicate speech recognizers without
and with prosodic module, respectively.

(Baseline — Proposed) Filler Non-filler
Incorrect — Correct 7 4
Correct — Incorrect 0 3

4. Conclusions

An improvement was realized in the ability of expressing
designated emotions in our corpus-based method of generating

F, contours of emotional speech. Currently, the method is only
trained for a speech corpus, and used for realizing the same
emotion in the same voice quality. Further research is planned
to realize emotional speech for a speaker without speech corpus
of that emotion: applying deviations in acoustic features
between emotional speech and calm speech of an actor/actress
to other speaker's calm speech to generate his’her emotional
speech.

A new method of detecting fillers in spontaneous speech
during the speech recognition process was developed.
Although some errors arose for non-filler morphemes, they
were due to the search algorithm of the 2™ pass of the baseline
recognizer Julian, and could be recovered by changing the
algorithm.  Further experiments are planned for increased
number of utterances. It is known that speakers use fillers
rather differently in their spontaneous utterances. Adaptation
methods to cope with this variation are also in the scope of our
future work.

5. References

[11 K. Molla, K. Hirose, and N. Minematsu, "Separation of mixed
audio signals by decomposing Hilbert spectrum with modified
EMD," [EICE Transaction on Fundamentals of Electronics,
Communication and Computer Sciences, to appear (2006).

[2] K. Molla, K. Hirose, and N. Minematsu, "Localization based
separation of mixed audio signals with binary masking of Hilbert
Spectrum," Proc. IEEE ICASSP, Toulouse, to appear (2006-5).

[3] K. Hirose, K. Sato, Y. Asano and N. Minematsu, "Synthesis of Fy
contours using generation process model parameters predicted
from unlabeled corpora: Application to emotional speech
synthesis," Speech Communication, Vol.46, Nos.3-4, pp.385-404
(2005-7).

[4] Q. Sun, K. Hirose, W. Gu, and N. Minematsu, "Generation of
fundamental frequency contours for Mandarin speech synthesis
based on tone nucleus model," Proc. EUROSPEECH, Lisbon,
pp.3625-3628 (2005-9).

[51 Q. Sun, K. Hirose, W. Gu, and N. Minematsu, "Rule-based
generation of phrase components in two-step synthesis of
fundamental frequency contours of Mandarin," Proc.
International Conference on Speech Prosody, Dresden, to appear
(2005-5).

[6] K. Hirose, Y. Abe, and N. Minematsu, "Detection of fillers using
prosodic features in spontaneous speech recognition of Japanese,"
Proc. International Conference on Speech Prosody, Dresden, to
appear (2005-5).

[71 J. Zhang and K. Hirose, "Tone nucleus modeling for Chinese
lexical tone recognition," Speech Communication, Vol.42, Nos.3-
4, pp.447-466 (2004-4).

[81 Y. Yagi, S. Takada, K. Hirose and N. Minematsu, "Improved
concept-to-speech generation in a dialogue system on road
guidance," Proc. International Conference on CYBERWORLDS,
Singapore, pp.429-436 (2005-11).

[9] Fujisaki, H. and Hirose, K., "Analysis of voice fundamental
frequency contours for declarative sentences of Japanese," J.
Acoust. Soc. Japan (E), Vol.5, No.4, pp.233-242 (1984-10).

[10] Edinburgh University, The Edinburgh Speech Tools Library,
http://www.cstr.ed.ac.uk/projects/speeech_tools/.

[11] Kyoto University, Japanese Syntactic Analysis System KNP
http://www-nagao.kuee.kyoto-u.ac.jp/projects/nl-
resource/.Galatea Project, http://hil.t.u-tokyo.ac.jp/~galatea/regist-
jp-html

[12] Galatea Project, http:/hil.t.u-tokyo.ac.jp/~galatea/regist-jp.html

[13] A. Lee, T. Kawahara, and K. Shikano, K., "Julius — an open
source real-time large vocabulary recognition engine," Proc.
EUROSPEECH, Aalborg, pp. 1691-1694 (2001).

[14] K. Macekawa, "Corpus of spontaneous Japanese: Its design and
evaluation." Proc. ISCA and IEEE Workshop on Spontaneous
Speech Processing and Recognition, Tokyo, pp. 7-12 (2003).

— 128 —



