(1)

1970

1.2.

)

®3)

21
42

(2003 1 22 23)

Java
Jimple CTL-FV
Jimple
CTL-FV
SMV
SMV
CTL-FV

2.2 Workshop on Robust Software Construction
WRSC2003 2003 2 28
3 2 IPC

Information Processing Laboratory in the
University of Tokyo starts a project named
Robust Software Construction. As its name
indicates, this project aims to formalize a
framework which assists construction of robust
software that is efficient, correct, safe, and
secure.

As the beginning of this five-year project, we
would like to hold a workshop and welcome
researchers of various fields in order to deepen
knowledge and insight each other regarding

robustness of software construction. The
research topics of this workshop are (but not
limited to):
- program transformation and partial
evaluation,
- model checking and program analysis,
- program optimization,
- algorithm derivation and synthesis,
- formal method on software engineering.
In this workshop there are four invited talks
from abroad.
Hong Mei (Peking University)
Alberto Pettorossi
(University of Roma Tor Vergata)
Maurizio Proietti (IASI-CNR)
Eric Van Wyk (University of Minnesota)

The workshop organizers are as follows.
Masato Takeichi (University of Tokyo)
Yoshihiko Futamura (Waseda University)
Zhenjiang Hu (University of Tokyo)
Kazuhiko Kakehi (University of Tokyo)

February 28(Friday)
14:00-15:00 Invited Talk (Chair:M.Takeichi)
Derivation of Efficient Logic Programs by
Specialization and Reduction of
Nondeterminism,
Alberto Pettorossi (Univ. of Roma Tor Vergata)
15:20-16:30 Session 1 (Chair: Mei Hong)}
Parallelization with Tree Skeletons
Kiminori Matsuzaki (Univ. of Tokyo)
Cumulative Method: Recursion Removal from
Mutual Recursive Programs with One Descent
Function
Yuusuke Ichikawa, Zenjiro Konishi,
Yoshihiko Futamura (Waseda Univ.)
16:50-18:00 Session 2 (Chair: Zhenjiang Hu)
Towards Self-Applicable GPC:. Progress
Report
Masahiko Kawabe, Zenjiro Konishi,
Yoshihiko Futamura (Waseda Univ.)
The Translation Power of the Futamura
Projections
Robert Gluck
(PRESTO, JST & Waseda Univ.)
March 1(Saturday)
9:00-10:00 Invited Talk (Chair: M. Ogawa)
Software \Verification and Synthesis via
Program Transformation
Maurizio Proietti (IASI-CNR)
10:20-11:30 Session 3 (Chair: A. Pettorossi)

Maximum List Marking in Parallel
Zhenjiang Hu
(Univ. of Tokyo & PRESTO, JST)
Systematic Generation of Efficient Pattern
Matchers for Compressed Data
Yoshihiko Futamura, Zenjiro Konishi,
Kazuaki Maeho, Masahiko Kawabe
(Waseda Univ.)
11:30- Introduction of other researches
13:20-14:20 Invited Talk (Chair: S. Nakajima)
Language Extensions for Robust Computing
Eric Van Wyk (Univ. of Minnesota)
14:40-16:25 Session 4 (Chair: Eric Van Wyk)
Automatic Generation of Program Analyses on
Model Checking
Yuji Yamaoka (Univ. of Tokyo)
Model-Checking of Component Integration
Frameworks - A Case Studly -
Shin Nakajima
(Hosei Univ. & PRESTO, JST)
Generic Solution for Maximum Marking
Problems in Generic Haskell
Isao Sasano (Univ. of Tokyo)
16:50-18:00 Session 5 (Chair: M. Proietti)
Functional Meta-programming for Program
Calculation
Tetsuo Yokoyama (Univ. of Tokyo)
Catamorphic Approach to Control Flow
Analysis
Mizuhito Ogawa
(PRESTO, JST & Univ. of Tokyo)
March 2(Sunday)
9:00-10:00 Invited Talk (Chair: Y. Futamura)
ABC: Architecture Based Component
Composition
Hong Mei (Peking Univ.)
10:20-11:30 Session 6 (Chair: R. Gluck)
Fusing Functions of Regular Expression Types
and Patterns
Kazuhiko Kakehi (Univ. of Tokyo)
A Compositional Framework for Mining
Longest Ranges
Haiyan Zhao (Univ. of Tokyo)
11:30- Closing

Abstract of the talk Derivation of Efficient
Logic Programs by Specialization and
Reduction of Nondeterminism by Alberto
Pettorossi (join work with F. Fioravanti, M.
Proietti, and S. Renault):

Program specialization is a
transformation methodology that

program
improves

program efficiency by exploiting the
information about the input data that are
available at compile time. We show that
current techniques for program specialization
based on partial evaluation do not perform well
on nondeterministic logic programs. We then
consider a set of transformation rules that
extend the ones used for partial evaluation, and
we propose a strategy for guiding the
application of these extended rules so to
derive very efficient specialized programs. The
efficiency improvements that sometimes are
exponential, are due to the reduction of
nondeterminism and to the fact that the
computations which are performed by the
initial programs in different branches of the
computation trees, are performed by the
specialized programs within single branches.
In order to reduce nondeterminism we also
make use of mode information for guiding the
unfolding process. We also extend our
technique to logic programs with constraints
and we show that, by making use of a new
transformation rule called clause splitting, we
can generate efficient, specialized programs
that are deterministic. To exemplify our
technique, we show that one can automatically
derive very efficient matching programs and
parsing programs. The derivations we have
performed could not have been done by
previously known partial evaluation
techniques.

Abstract of the talk Software Verification and
Synthesis via Program Transformation by
Maurizio Proietti (joint work with F. Fioravanti
and A. Pettorossi):

We show how program transformation can be
used for proving properties of programs and for
synthesizing programs from logical
specifications. We consider constraint logic
programs with locally stratified negation and
we propose a technique for showing that a
closed first order formula phi holds in the
perfect model M(P) of a program P, written as
M(P) |= phi. For this purpose we consider a
new version of the unfold/fold transformation
rules and we show that this version preserves
the perfect model semantics. Our proof method,
called unfold/fold proof method, shows M(P)|=
phi in two steps: (Step 1) the formula phi is
encoded as a set of clauses F(f,phi), where f is a

new O-ary predicate symbol such that M(P) |=
phi iff M(P U F(f,phi)) |= f, and then (Step 2)
the program P U F(f,phi) is transformed, by
using the unfold/fold rules, into a new program
Q such that M(P U F(f,phi)) |=fiff M(Q) |=T1. If
Q contains the clause f <- (i.e. a statement
asserting that f is true), then M(P) | = phi holds.
If Q does not contain any clause for f,then
M(P) |= phi does not hold. We also present a
strategy for applying our unfold/fold rules in a
semi-automatic way. Due to well-known
undecidability results, our strategy is
incomplete, that is, for some initial program P
and formula phi such that M(P)|= phi holds,
our strategy is not able to derive the clause f <-.
However, we identify some classes of programs
and formulas for which our strategy is fully
automatic and always terminates by deriving
either f <- or the empty set of clauses for f. Thus,
our strategy is a decision procedure for
checking whether or not M(P)]= phi for any
given program P and formula phi in those
classes. As an example, we show that the weak
monadic second order theory (WS1S) can be
decided by using the unfold/fold proof method.
Finally, we show how the unfold/fold proof
method can be enhanced to perform program
synthesis from first order formulas with free
variables.

Abstract of the talk Language Extensions for
Robust Computing by Eric Van Wyk:

Extensible languages and compilers allow
programmers to import new language features
into their programming environment. These
features may be general purpose or domain
specific; they may be defined by the
programmer or by a domain expert. They
define their own syntax, semantics and
optimizations and are often implemented as
transformations into equivalent constructs in
the base source language.

Besides providing a means for raising the
level of abstraction, language extensions can
also specify and verify certain correctness
properties. In this talk, we describe an
extensible language framework for Java and
example extensions that help programmers
write more robust code. One extension uses
regular expressions over method names to
specify the valid order in which method calls to
an object can be made; it also dynamically

ensures that this ordering is followed.

Abstract of the talk ABC. Architecture Based
Component Composition by Mei Hong:

How to compose prefabricated components is
a key issue in component-based reuse.
Research on Software Architecture (SA) and
Component-based Software Development
(CBSD) provides two hopeful solutions from
different perspectives. SA provides a top-down
approach to realize component-based reuse.
However, it pays less attention to the
refinement and implementation of the
architectural descriptions, not providing the
necessary capability to automate the
transformation or composition to form finally
an executable application. CBSD technology
such as J2EE and CORBA provides a feasible
bottom-up way to construct systems from

standard components, forming an
implementation basis for an integrated
component-oriented development process.

However, these technologies do not pay
attention to the systematic methodology to
guide the CBSD process, especially the
component composition at higher abstract
levels. We argue that it is a natural solution to
combine these two approaches.

In this talk, an architecture-based
component composition (ABC) approach is
presented. In this solution, SA description is
used as the blueprint and middleware
technology as the runtime scaffold for
component composition, using mapping rules
and mini-tools to shorten the gap between
design and implementation. Our approach
presents an ADL, called ABC/ADL, supporting
component composition. Besides the capability
of architecting software systems, it provides
support to the automated application
generation based on SA model via mapping
rules and customizable connectors. A tool to
support ABC approach, called ABC-Tool, is
presented, which provides a graphic user
interface to design and reason software
architecture, then transforms architectural
model into implementation running on
middleware platform by composing
pre-fabricated components into the target
system in an automated process.

