
Marc Hamilton

Director of Technology

Global Education and Research

Sun Microsystems, Inc

University of Tokyo Java Class

September 22-26, 2003

Intro to Web Services

Primary Goal of the Presentation

Learn Web services architecture over J2EE�
platform and how to create and deploy
Web services using core Java� APIs for Web
services: JAX-RPC (focus of this session),
JAXR, JAXM.

Agenda for Technical Session

� Web services architecture over

J2EE� platform
� JAX-RPC (Focus of this session)
� JAXM, JAXR
� Steps for building and deploying a

Web service
� Steps for building a Web service Client
� Web services tools for J2EE� platform

Web Services Architecture

Over J2EE
�
 Platform

What Is a Web Service?

� A set of endpoints (ports) operating
on messages

� Ports are operating within a container

Container provides runtime environment

Contract for runtime environment are specified in
JAX-RPC, EJB� 2.1 specification, JSR 109

� Service is described abstractly in WSDL document
and published to a registry

WSDL specifies a contract between service provider
and client

Web Service Component
and Container
� Container vs. Component model

Web services components get executed
within a container

Components are portable

(under J2EE� 1.4 container)
� Web service components

Web-tier (Servlet-based endpoint)

EJB�-tier (Stateless session bean-based endpoint)

Web Service Components

Source: Web Services for J2EE (JSR 109), V1.0

Web Ser v i ces
Component sApplet

Container

Client Container

Web Container EJB Container

Port

JSP

EJB

Port

Servlet

J2EE Server Core J2EE Server CoreJ2EE Server Core

HTTP/ SSL RMI/ IIOP

SOAP/ HTTP,...

other bindings

JMDM

JAX-RPC RMI/
IIOP JDBCJava

Mail

JAF

JMDM

JAX-RPC RMI/
IIOP JDBCJava

Mail

JAF

JTA JMDM

JAX-RPC RMI/
IIOP JDBCJava

Mail

JAF

JTA

RMI/ IIOP

JAX-RPC

JAX-RPC

� Servlet-based Web service endpoint model
� WSDL to/from Java� mapping specification
� XML data types to/from Java� language types

mapping (serialization) specification
� Extensible type mapping
� SOAP Message Handler framework
� Packaging
� Client Programming Models

JAX-RPC Architecture Diagram

Server-side JAX-RPC

Runtime System

J AX-RPC

Ser v i ce
WSDL�Java

WSDL Document

HTTP

Client-side JAX-RPC

Runtime System

SOAP

Container

Java�WSDLGenerated Code

J AX-RPC

Cl i ent

Container

Relationship to WSDL

J AX-RPC descr i bes a Web Ser v i ce as a col l ect i on

of r emot e i n t er faces and met hods

Tools are used to convert between WSDL documents and sets of Java� remote interfaces (�Generate Web Services� menu in Sun� ONE Studio 4, �wscompile� in Java� WSDP)

WSDL descr i bes a Web Ser v i ce as a col l ect i on

of por t s and oper at i ons

SOAP Message Handlers

� Handlers let you access/modify SOAP
request and response messages

Typically used to process service contexts in SOAP header
blocks

Can be used to extend functionality of Web services runtime
system

• J2EE� containers (which provide Web services runtime) are likely to use
them internally to provide session/transaction propagation

� Example handlers:
Encryption, decryption, authentication, authorization,
logging, auditing, caching

SOAP Message Handlers

� Pluggable and chainable
Through standardized programming API

Portable across implementations

� Has its own lifecycle
JAX-RPC runtime system calls init(), destroy()
of a handler

� Handler instances can be pooled
� MessageContext is used to share properties among

handlers in a handler chain

SOAP Message Handlers

Ser v i ce

Endpoin t
(Por t)

Handler Handler

SOAP M essage

<Request >

SOAP M essage

<Response>

Handler

Example SOAP Message Handler

package com.example;
public class MySOAPMessageHandler implements javax.xml.rpc.handler.Handler {
 public MySOAPMessageHandler() { ... }
 public boolean handleRequest(MessageContext context, HandlerChain chain){
 try {
 SOAPMessageContext smc = (SOAPMessageContext)context;
 SOAPMessage msg = smc.getMessage();
 SOAPPart sp = msg.getSOAPPart();
 SOAPEnvelope se = sp.getEnvelope();
 SOAPHeader sh = se.getHeader();
 // Process one or more header blocks
 // ...
 // Next step based on the processing model for this handler
 }
 catch(Exception ex) {
 // throw exception
 }
 }
 // Other methods: handleResponse(), handleFault(), init(), destroy()
}

Session Management

� JAX-RPC runtime system manages session
Service client or service developer do not
have to deal with session management

� Supported Session management schemes over
HTTP

Cookie-based

URL rewriting
� SOAP Header-based session management

scheme in the future

Packaging of JAX-RPC
API-Based Applications

WSDL

JAX-RPC / JSR-109

Deployment Descriptor

service

implementation

service

interface

Web Application (WAR file)

handlers/

serializers

(optional)

Client Programming Models

� Stub-based (least dynamic)
Both interface (WSDL) and implementaion (stub) created
at compile time

� Dynamic proxy
Interface (WSDL) created at compile time

Implementation (dynamic proxy) created at runtime

� Dynamic invocation interface (DII)
Both interface (WSDL) and implementation
created at runtime

Stub-based Invocation Model

� Stub class gets generated from WSDL at
compile time

• All needed value classes are also generated

• Instantiated using generated Service class

• Stub class is bound to a specific XML protocol (i.e., SOAP) and transport (i.e., HTTP)

• Static compilation gives maximum performance

• Stub class implements

javax.xml.rpc.Stub interface

Web service definition interface

Stub Class Hierarchy

<<interface>>

javax.xml.rpc.Stub

<<interface>>

com.example.stockQuoteProvider

com.example.StockServiceSoapBinding_Stub

<<package>>

javax.xml.rpc

<<package>>

com.<<vendor>>.xml.rpc

Dynamic Proxy-based
Invocation Model
� Dynamic proxy is generated on the fly

by JAX-RPC client runtime
� Application provides the Web service definition

interface the dynamic proxy conforms to during
runtime

Example: Dynamic Proxy Client

 package proxy;
 import java.net.URL;
 import javax.xml.rpc.Service;
 import javax.xml.rpc.JAXRPCException;
 import javax.xml.namespace.QName;
 import javax.xml.rpc.ServiceFactory;
 public class HelloClient {

 public static void main(String[] args) {
 try {
 String UrlString = "http://localhost:8080/ProxyHelloWorld.wsdl";
 String nameSpaceUri = "http://proxy.org/wsdl";
 String serviceName = "HelloWorld";
 String portName = "HelloIFPort";

 URL helloWsdlUrl = new URL(UrlString);

 ServiceFactory serviceFactory = ServiceFactory.newInstance();

 Service helloService =
 serviceFactory.createService(helloWsdlUrl, new QName(nameSpaceUri, serviceName));

 HelloIF myProxy = (HelloIF) helloService.getPort(new QName(nameSpaceUri, portName), proxy.HelloIF.class);

 System.out.println(myProxy.sayHello("Buzz"));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }

DII Invocation Model

� Gives complete control to client programmer
� Most dynamic
� Enables broker model

Client finds (through some search criteria) and invokes a
service during runtime through a broker

Used when service definition interface is not
known until runtime

You set operation and parameters during runtime
� Has to create Call object first

Example: DII Client

 package dynamic;

 import javax.xml.rpc.Call;
 import javax.xml.rpc.Service;
 import javax.xml.rpc.JAXRPCException;
 import javax.xml.namespace.QName;
 import javax.xml.rpc.ServiceFactory;
 import javax.xml.rpc.ParameterMode;

 public class HelloClient {

 private static String endpoint =
 "http://localhost:8080/dynamic-jaxrpc/dynamic";
 private static String qnameService = "Hello";
 private static String qnamePort = "HelloIF";

 private static String BODY_NAMESPACE_VALUE =
 "http://dynamic.org/wsdl";
 private static String ENCODING_STYLE_PROPERTY =
 "javax.xml.rpc.encodingstyle.namespace.uri";
 private static String NS_XSD =
 "http://www.w3.org/2001/XMLSchema";
 private static String URI_ENCODING =

 "http://schemas.xmlsoap.org/soap/encoding/";

Example: DII Client

 public static void main(String[] args) {
 try {
 ServiceFactory factory = ServiceFactory.newInstance();
 Service service = factory.createService(new QName(qnameService));
 QName port = new QName(qnamePort);

 Call call = service.createCall(port);
 call.setTargetEndpointAddress(endpoint);

 call.setProperty(Call.SOAPACTION_USE_PROPERTY, new Boolean(true));
 call.setProperty(Call.SOAPACTION_URI_PROPERTY,"");
 call.setProperty(ENCODING_STYLE_PROPERTY, URI_ENCODING);
 QName QNAME_TYPE_STRING = new QName(NS_XSD, "string");
 call.setReturnType(QNAME_TYPE_STRING);
 call.setOperationName(new QName(BODY_NAMESPACE_VALUE "sayHello"));
 call.addParameter("String_1", QNAME_TYPE_STRING, ParameterMode.IN);
 String[] params = { "Duke!" };

 String result = (String)call.invoke(params);
 System.out.println(result);

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }

JAXM

What Is JAXM?

� Java� technology support for sending and
receiving SOAP messages

Based on the SOAP 1.1 and the SOAP with
Attachment specifications

� Supports higher-level semantics built on top of
SOAP through a profile

ebXML Message Service profile

JAX-RPC Relationship With JAXM

� Both based on SOAP with attachments API for

Java (SAAJ 1.1)

� In addition, JAXM supports:

Sending and receiving SOAP XML document-oriented messages

One-way (asynchronous)

Routing of a message to more than one party

Reliable messaging such as guaranteed delivery

javax.xml.rpc javax.xml.messaging

javax.xml.soap

JAXM Architectural Roles

� JAXM Messaging Provider (JAXM Provider)
� JAXM Client (JAXM Application)

JAXM client that does not use JAXM provider
(Standalone JAXM client)

JAXM client that uses JAXM provider

JAXM Messaging Provider

� Works behind the scene on behalf of the JAXM
client

� Offers message routing and reliable messaging
as all messages go through it

Assigning message identifiers and keeping track of
messages

Persistently storing messages

JAXM Client That Does Not Use JAXM
Provider (Standalone Client)

� Just a standalone J2SETM application

� Point-to-point operation
Establishes a connection directly with the service
(using a URL)

� Synchronous only
Request/response interaction

� In �CoffeeBreak� lab exercise, only standalone
client is used

Client Service

Request

Response

JAXM Providers

Client Service

JAXM Client That
Uses JAXM Provider

� Maintains a connection with JAXM provider, and all messages go through the provider

� JAXM client deployed in a web or EJB� container

MessageDrivenBean

JAXMServlet

� Send and receive messages synchronously or asynchronously

JAXR

What Is JAXR?

� Standard Java� API for performing registry
operations over diverse set of registry providers

Service registration and discovery
� A unified information model for describing

business registry content

JAXR Architecture

JAXR Client

JAXR API

Capability-Specific Interfaces

UDDI Provider Other ProviderebXML Provider

ebXML/

SOAP

UDDI/

SOAP
????

ebXML UDDI Other

Registry-

Specific

JAX Provider

Diverse

Registries

Web Service
Development Steps

Steps for Development and
Deployment of Web Services

I. Define a Web service

II. Implement the Web service

III. Produce deployment ready package

IV. Deploy package over J2EE� platform

V. Publish the Web service and binding
information to a service registry

VI. Serve service requests from client

Step 1: Defining a Web Service

� Web service is defined in:

� WSDL or

� Web service endpoint interface (Java interface)

� Top-down

� WSDL is created (or found) first before
its implementation

� Bottom-up (�CoffeeBreak� lab exercise)

� WSDL and Web service endpoint interface get

generated from existing Java
�

 class

Web Service Endpoint Interface

� A Java� interface type as specified in
JAX-RPC

Extends java.rmi.Remote
� Describes remote Web services in an

abstract fashion
� Could be generated from WSDL

In �CoffeeBreak� lab exercise, Sun� ONE Studio
generates Web services endpoint interface from
WSDL

 public interface StockQuoteProvider
 extends java.rmi.Remote {

 public float getLastTradePrice(String tickerSymbol)
 throws java.rmi.RemoteException;
 ...
 }
 }

Example: �StockQuote� Web
Service Endpoint Interface

// This interface is generated by
// Java Studio from WSDL document, which have been in turn
// generated from existing Java class (Supplier.java).

public interface SupplierServiceRPC extends java.rmi.Remote {

 public beans.PriceListBean getPriceList()
 throws KomodoException,java.rmi.RemoteException;

 public beans.ConfirmationBean placeOrder(beans.OrderBean order)
 throws KomodoException,java.rmi.RemoteException;

}

Example: �SupplierService� Web
Service Endpoint Interface

Step 2: Implement Web Service

� Choose implementation form
Java� class (for servlet-based endpoint)

Stateless session bean
� In �CoffeeBreak� lab exercise, we use

bottom-up approach
Implementation class (Supplier.java)
already exist

WSDL document and Web services end
point interface are created from existing
implementation class

public class StockQuoteProviderImpl
 implements StockQuoteProvider {

 public float getLastTradePrice(String tickerSymbol)
 throws java.rmi.RemoteException{
 // business logic for method
 }
}

Example: Implementation

public class Supplier {

 // Business method to be exposed as a Web service
 public ConfirmationBean placeOrder(OrderBean order) {
 Date tomorrow = DateHelper.addDays(new Date(), 1);
 ConfirmationBean confirmation = new ConfirmationBean();
 confirmation.setOrderId(order.getId());
 confirmation.setShippingDate(tomorrow);
 return confirmation;
 }
 // Business method to be exposed as a Web service
 public PriceListBean getPriceList() {
 PriceListBean priceList = loadPrices();
 return priceList;
 }
 ...
}

Example: Implementation in
�CoffeeBreak�

Step 3: Create Deployable Package

� Ready-to-deployable package
WAR file (servlet-based)

EJB-JAR file (stateless session bean based)
� Standardization for portability

Package structure

Web Services Deployment descriptor

Step 4: Deploy Package

� Responsibility of Container
(or deployment tool)

Validation of the package

Creation of runtime artifacts

Configuration of the server�s SOAP request listeners
for each port (binding to a port)

Generation of concrete WSDL document

Publication of Web services

Web Service Client
Development Steps

WSDL Document

WSDL View of a Web Service

Service A
Binding "FooB"

SOAP/ HTTP

Port Type "FooPT"

Operation "Op1"

Operation "Op2"Service B

Port "Bar"

Port "Xyz"

Port ...

Http:/ / .../ foo

Port "Foo"

WSDL Elements/Java�

Mapping Speficication

Service

Port

PortType Binding

1..n

1
1

1..n

Types

1..n

Class

Interface

Package

Method
ParametersOperation

Message

Web Services Client View

� Abstract part of WSDL document (PortType) is
represented by Service Endpoint Interface

Container provides actual implementations of Service
Endpoint Interface

• Stub or dynamic proxy

� Concrete part of WSDL document (Service, Port) is
represented by Service Interface

Container provides actual implementation of Service
interface

• Service object

Service object is a factory class for stub or dynamic proxy

Web Services Client and Service

Container

Client

Service

Endpoint

Interface

Service

Interface

Port

Development Steps for
Web Service Client

� Discover WSDL description of a service
Identify endpoint address of the service

� Get client-side Web services code artifacts (i.e.,
Stub, dynamic proxy, DII)

Code artifacts are generated by container
(or deployment tool)

� Send messages to service endpoints that
provide service implementation (through
stub or dynamic proxy)

� Receive back messages that contain results

public class OrderCaller {
 // Local variable for service specific stub object
 private SupplierServiceRPC supplier;

 public OrderCaller(String endpoint) {
 try {
 // Note: SupplierService_Impl is implementation-specific.
 // Get Stub object
 Stub stub = (Stub)
 (new SupplierService_Impl().getSupplierServiceRPCPort());
 // Set endpoint address through Stub interface
 stub._setProperty(ENDPOINT_ADDRESS_PROPERTY, endpoint);
 // Cast Stub object to service specific stub object
 supplier = (SupplierServiceRPC)stub;
 } catch (Exception ex) {ex.printStackTrace();}
 }

Example: Web Service Client
Using Stub

 public ConfirmationBean placeOrder(OrderBean order) {
 ConfirmationBean result = null;
 try {
 // Invoke a method through stub object
 result = supplier.placeOrder(order);
 } catch (Exception ex) {
 System.out.println("Error in OrderCaller.placeOrder");
 ex.printStackTrace();
 }
 return result;
 }

} // class

Example: Web Service Client
Using Stub

Web Service Tools for J2EE�
Applications

Java� Web Services Developer Pack
(Java WSDP)
� Provides a convenient all-in-one package

• Contains:

JAXP, JAXM, SAAJ, JAX-RPC, JAXR

Tomcat

JSP� Tag Library (JSTL)

JSSE (Java� Secure Socket Extension)

Ant build tool

Web application deployment tool

Java� WSDP Registry Server (UDDI server)

Extensive tutorial

� Java� WSDP 1.2, June 2003,

Sun� ONE Studio 5 SE
(Web Services Support)

• Automatic generation of WSDL document from
Java� class or EJB� specification

• Browser-based test code generation

• One-click deployment

• SOAP message handler

• Basic authentication support

• Registration and discovery of Web service (WSDL
document) through UDDI registry

• Java� WSDP is used underneath

Creating a Web service in Java Studio

Creating a Web service in Java Studio

Creating a Web service in Java Studio

Creating a Web Service in Java Studio

Summary and Resources

Summary

� J2EE� platform is the platform of choice
for the development and deployment of
Web services

� There are already comprehensive set of

Java� APIs for Web services
� Tools are also available for development

and deployment of Web services
� J2EE� 1.4 specification makes Web services

component as 1st class citizen

Resources on J2EE� Technology
and Web Services

• J2EE� technology Home Page
java.sun.com/j2ee

• J2EE� platform 1.4 Beta
developer.java.sun.com/developer/earlyAccess/j2sdkee/

• J2EE� 1.4 Blueprints Adventure Builder 1.0
developer.java.sun.com/developer/releases/adventure/

• JAXM, JAX-RPC, JAXR
java.sun.com/xml

Resources on Web Services Tools

• Java� Web Services Developer Pack Download
java.sun.com/webservices/downloads/webservicespack.html

• Java� Web Services Developer Pack Tutorial
java.sun.com/webservices/downloads/webservicestutorial.html

• Sun� Application Server
wwws.sun.com/software/products/appsrvr/home_appsrvr.html

• Java Studio
wwws.sun.com/software/sundev/jde/buy/index.html

Web Services Tutorials With
Sun� App Server and Java Studio

� J2EE� Application Tutorial for Sun� ONE Platform
java.sun.com/j2ee/1.3/docs/tutorial/doc/index.html

� Developing Amazon.com Web service client
developer.java.sun.com/developer/technicalArticles/WebServices/
amazonws/

� Building Web services with Sun
�
 ONE Application Server

sunonedev.sun.com/building/tech_articles/jaxrpc/

� Java Studio Web services tutorial
wwws.sun.com/software/sundev/jde/examples/index.html

� JAX-RPC on the Sun� ONE Web Services Platform Developer
Edition

sunonedev.sun.com/building/tech_articles/jaxrpcs1.html

Marc Hamilton

marc.hamilton@sun.com

Sun Microsystems, Inc.

