
Performance
Tuning

1

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Application Performance Tuning
(An Overview)

Dr Simon See

High-Performance and Technical Computing

Asia Pacific Science and Technology Center
Sun Microsystems Inc

Java Technology Workshop
September 25th, 2003

Material is developed by Ruud Van Pas

Performance
Tuning

2

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Outline
❑ Introduction
❑ The Memory Hierarchy
❑ Single Processor Performance

● The Sun Compilers
● The Sun Performance Analyzer
● Serial Optimization Techniques

❑ Parallelization
● Introduction Parallelization
● The SunFire Server Architecture
● Automatic Parallelization by the Sun Compilers
● Explicit Parallelization with OpenMP

Performance
Tuning

3

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Introduction

Performance
Tuning

4

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Terminology/1

Example:

for (i=0; i < 1000000; i++)
 a[i] += 2 * b[i];

Floating point operations : 2*1000000 = 2000000
Execution time : 4 seconds

☞ Performance = 1.0E-06*(2000000)/4 = 0.5 Mflop/s

Mflop/s
✔ Mflop/s = Million Floating Point operations/second
✔ Popular metric for performance
✔ Calculate by counting flops and divide by execution time
✔ Requires that one knows how many flops are performed

Performance
Tuning

5

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Terminology/2
❑ Cycles

● Processor cycles (in nanoseconds)
● Typically gives us a best-case scenario

❑ Pragma
● #pragma "information to the C compiler"
● !$directive "information to the Fortran compiler"

❑ Memory footprint
● How much memory is used by the application ?

Performance
Tuning

6

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Pipelining

5

4

3

2

1

stage 1
stage 2
stage 3
stage 4

Let's assume we have an operation
that takes 4 stages per iteration

stage 1
stage 2
stage 3
stage 4

✔ ✔ ✔

Time

Latency of this operation
("start-up" time)

5

4

3

2

1

5

4

3

2
1

5

4

3
2
1

5

4
3
2
1

5
4
3
2

1 2

5
4
3

5
4

3

inputs

Performance
Tuning

7

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Superscalar
❑ N-way superscalar:

● Execute N instructions at the same time
❑ This is also called Instruction Level Parallelism (ILP)

❑ The hardware has to support this, but it is up to the
software to take advantage of it

❑ Often there are restrictions which instructions can be
"bundled"

❑ These are documented in the Architecture Reference
Manual for the microprocessor

cycle 1

slot 1 slot 2 slot 3 slot 4

cycle 2
cycle 3
cycle 4

not used
not used not used

not used
cycle 5

4-way superscalar
3-way superscalar
2-way superscalar
2-way superscalar
3-way superscalar

not used
not used

Performance
Tuning

8

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

The Memory Hierarchy

Performance
Tuning

9

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®About Memory
❑ Memory plays a crucial role in performance
❑ Not accessing memory in the right way will degrade

performance on all computer systems
❑ The extent of the degradation depends on the system
❑ Knowing more about some of the relevant memory

characteristics will help you to write code such that the
problem will be non-existent, or at least minimal

Performance
Tuning

10

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®More about Memory

CPU

~200 ns~1 ns

1x 200x

Memory

slow

Performance
Tuning

11

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®About Caches and Memory

L2
cache

slowfastest

CPU

~200 ns~10-20 ns~1 ns

1x 10- 20x 200x

MemoryL1
cache

faster

Performance
Tuning

12

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The Memory Hierarchy

Memory Optimization:
Keep frequently used data close to the processor

Size
Speed

CPU
Physical
Memory
(RAM)

pagecache
lineelement

L1-caches
Microprocessor

L2 Unified
Cache

Registers

D-cache

TLB

I-cache

cache
line

~200 ns~10-20 ns< 1 ns

Performance
Tuning

13

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The TLB Cache ('Address Cache')

TLB cache

Physical
Memory

page

page address

page address

Instruction Pipeline

Load
Instruction

1. TLB
Lookup

Set up new
TLB entry

2. If address not in TLB:

3. Load Instruction
Resumes

Load Instruction Stalls

Note that Solaris on SPARC uses a TSB in
memory that acts as a buffer for the TLB

page

Performance
Tuning

14

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Performance Is Not Uniform
Pe

rf
or

m
an

ce

Memory Footprint

64

Main Memory Virtual memory

Tuning "area"

The length of a plateau is related to the size of
that memory component

The amount of the drop is related to the latency
(or bandwidth) of that memory component

L1Reg. L2

64 KB 8 MB

Performance
Tuning

15

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Example - 13th deg. polynomial

SF6800 - USIII Cu@900MHz
L1 cache : 64 KByte
L2 cache : 8 MByte
Peak speed : 1800 Mflop/s

for (i=0; i<vlen; i++)
 p[i] = c[0] + q[i]*(c[1] + q[i]*(c[2] + q[i]*(c[3] +

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

 This operation is CPU
bound i.e. there are
many more floating
point operations than
memory references

 The system realizes over
98% of the absolute
peak performance !

 Note the start-up effect
and the performance
drop for larger problems

L1-cache
limit

L2-cache
limit

Performance
Tuning

16

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
0

25

50

75

100

125

150

175

200

225

250

275

300

Example - Vector addition

SF6800 - USIII Cu@900MHz
L1 cache : 64 KByte
L2 cache : 8 MByte
Peak speed : 1800 Mflop/s

for (i=0; i<vlen; i++)
 p[i] = q[i] + r[i];

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

 This operation is
memory bound i.e. there
are more memory
references than floating
point operations

 The system realizes
close to the theoretical
peak performance for
this operation (=16% of
absolute peak)

 Note the start-up effect
and the performance
drop for larger problems

L1-cache
limit

L2-cache
limit

Performance
Tuning

17

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
10
13
15
18
20
23
25
28
30
33
35
38
40
43
45
48
50
53
55

Example - Vector divide

SF6800 - USIII Cu@900MHz
L1 cache : 64 KByte
L2 cache : 8 MByte
Peak speed : 1800 Mflop/s

for (i=0; i<vlen; i++)
 p[i] = q[i] / r[i];

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

 This operation is
latency bound i.e. the
cost of the instruction
outweighs the cost of
fetching data (if the
data is close enough
to the processor)

 The division is an
example of a non-
pipelined, long
latency operation

 Can be overlapped
with other floating
point operations

L1-cache
limit

L2-cache
limit

Performance
Tuning

18

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Data Prefetch

Performance
Tuning

19

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Hiding Memory Latency

time time

memory memorycompute compute computememory compute compute

prefetch prefetch prefetch

Example: summation of elements

 The memory access pattern may be predictable:

 With prefetch, one fetches memory before it is needed

 This is called a "latency hiding technique"

Performance
Tuning

20

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Prefetch on US-III Cu
❑ The Sun compilers support software prefetch:

● Automatic - Compiler does a best effort
✔ Use -xprefetch=yes and (optionally)
✔ -xprefetch_level=n (n=1, 2 or 3)

● Explicit - User tells the compiler what to prefetch
✔ Through function calls (C and C++) and

directives (Fortran)
● Combination of both

❑ Need UltraSPARC-III Cu for this
❑ If data is already 'close by', prefetch may slow down

the application

Performance
Tuning

21

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Vector poly-
nomial (no
Vector poly-
nomial (with

Prefetch - 13th deg. polynomial

SF6800 - USIII Cu@900MHz
L1 cache : 64 KByte
L2 cache : 8 MByte
Peak speed : 1800 Mflop/s

for (i=0; i<vlen; i++)
 p[i] = c[0] + q[i]*(c[1] + q[i]*(c[2] + q[i]*(c[3] +

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

 Re-compiled with
automatic prefetch
enabled

 Performance for L1
resident problem
sizes is the same

 For larger problem
sizes, automatic
prefetch is a big win !

L1-cache
limit

L2-cache
limit

Performance
Tuning

22

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
0

25

50

75

100

125

150

175

200

225

250

275

300

Vector add (no
pref)
Vector add (with
pref)

Prefetch - Vector addition

SF6800 - USIII Cu@900MHz
L1 cache : 64 KByte
L2 cache : 8 MByte
Peak speed : 1800 Mflop/s

for (i=0; i<vlen; i++)
 p[i] = q[i] + r[i];

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

 Re-compiled with
automatic prefetch
enabled

 Performance for L1
resident problem sizes
is less if prefetch is
used

 For larger problem
sizes, automatic
prefetch gives a
significant performance
improvement

L1-cache
limit

L2-cache
limit

Performance
Tuning

23

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
10
13
15
18
20
23
25
28
30
33
35
38
40
43
45
48
50
53
55

Vector divide (no
pref)
Vector divide
(with pref)

Prefetch - Vector divide

SF6800 - USIII Cu@900MHz
L1 cache : 64 KByte
L2 cache : 8 MByte
Peak speed : 1800 Mflop/s

L1-cache
limit

L2-cache
limit

for (i=0; i<vlen; i++)
 p[i] = q[i] / r[i];

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

 Re-compiled with
automatic prefetch
enabled

 Performance for L1
resident problem sizes is
the same

 For L2 resident problem
sizes, the improvement is
noticeable

 For larger problem sizes,
automatic prefetch gives
a dramatic performance
improvement !

Performance
Tuning

24

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

The UltraSPARC-III Cu
Microprocessor

Performance
Tuning

25

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®US-III Cu Functional Units
Instruction Issue Unit (IIU)

Floating Point Unit (FPU) Integer Execution Unit (IEU)

Data Cache Unit (DCU)

External Memory Unit (EMU) System Interface Unit (SIU)

4 instructions

L2
 c

ac
he

(S
R

A
M

)
M

em
or

y
(S

D
R

A
M

)

Interconnect

The Chip

Performance
Tuning

26

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®US-III Cu Block Diagram
Instruction Issue Unit (IIU)

I-CacheI-TLB I-QueueB-Pred

ALU 0
Dependency/trap logic

Ld/St/Special pipe
ALU 1

W&A RF

Integer Execution Unit (IEU)

Data Cache Unit (DCU)
Data
TLB

L1
Cache

Store
Queue

Write
Cache

Pref
Cache

External Memory Unit (EMU)

Memory
Controller

L2 Cache
Controller

L2 Cache
Tags

Data Switch
Controller

System Interface Unit (SIU)

Snoop pipe
Controller

4 instructions

The Chip

Interconnect

L2
 c

ac
he

(S
R

A
M

)
M

em
or

y
(S

D
R

A
M

)

Floating Point Unit (FPU)

FP add/subtract/VIS

FP mul/div/sqrt/VISFP Reg.
File

Performance
Tuning

27

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The Pipeline

Instruction

Integer

Floating Point

R E C M W X

RF F1 F2 F3 F4

A P F B I J T D

14-stage pipeline

Performance
Tuning

28

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®US-III/US-III Cu: 4-way superscalar
❑ Six execution pipelines:

● A0&A1 - Two integer arithmetic and logical pipelines
● BR - Branch pipeline
● MS - Load/store pipeline (also handles special instructions)
● FGM - FP multiply pipeline (also handles VIS instructions)
● FGA - FP add pipeline (also handles VIS instructions)

❑ Execute up to 4 instructions in parallel (2 IEU + 2 FPU)
❑ Floating Point Peak Performance is 2*Speed in MHz:

● 750 MHz: 1.5 Gflop/s
● 900 MHz: 1.8 Gflop/s
● 1050 MHz: 2.1 Gflop/s
● 1200 MHz: 2.4 Gflop/s

Performance
Tuning

29

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®UltraSPARC Cache Evolution
Feature US-II US-III US-III Cu

L1 cache (KB) 16 (1-way) 64 (4-way) 64 (4-way)

I-cache (KB) 16 (2-way) 32 (4-way) 32 (4-way)

E-cache (MB) 8 (1-way) 8 (1-way) 8 (2-way)

D-TLB entries 64 (fully ass.) 512 (2-way) 512 (2-way, t8_0)
16 (fully ass.) 16 (fully ass.)

512 (2-way, t8_1)

I-TLB entries 64 (fully ass.) 128 (2-way) 128 (2-way)
16 (fully ass.) 16 (fully ass.)

Prefetch cache (KB) n.a. n.a. 2 (4-way)

Write cache (KB) n.a. 2 (4-way) 2 (4-way)

Performance
Tuning

30

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®US-III Cu Memory Hierarchy

Prefetch Flavours:
read many P$ and E$
read once P$
write many E$ (exclusive)
write once E$ (shared)

Load-Use Latencies (cycles)
From L1 2-3
From P$ 3
L2 ~16
Memory System dep.

CPU

D-TLBs

I-TLBsRegisters

Prefetch
Cache

L1
D-Cache

L1
I-Cache

L2
E-Cache

Write
Cache

Main Memory
U

ltraSPA
R

C
-III C

u

Performance
Tuning

31

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Memory Access
(The Good, The Bad and the Ugly)

Performance
Tuning

32

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Cache lines
❑ For good performance, it is crucial to use the cache(s)

in the intended (=optimal) way
❑ Recall that the unit of transfer is a cache "line"
❑ A cache line is a linear structure i.e. it has a fixed

length (in bytes) and a starting address in memory

Register
File Cache

M
ain M

em
ory

cache line

CPU

Performance
Tuning

33

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Memory Access
❑ Memory has a 1D, linear, structure
❑ Access to multi-dimensional arrays depends on the

way data is stored
❑ This is language dependent:

Fortran C

column-wise row-wise

= cache lines
(and pages)

Bad Memory Access Has A Huge
Impact On Performance

good

go
od

bad

ba
d

Performance
Tuning

34

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Bad Memory Access (C)
storage order

ba
d

ac
ce

ss
 o

rd
er

TLB miss

= Cached elements
= Virtual memory page

= D-cache miss
= TLB miss

good access order ✔ If the entire matrix fits in
the cache, the access
pattern hardly matters

✔ For out-of-cache matrices
however, the access
pattern does matter

✔ With a bad memory access
pattern, we will get many
more D-cache and TLB
misses

Performance
Tuning

35

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
1

10

100

1000

SB1000 ROW
SB1000 COL

Performance - Matrix Summation
for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 sum += x[i][j];

for (j=0; j<n; j++)
 for (i=0; i<n; i++)
 sum += x[i][j];

Row version Column version

SB 1000 – USIII @ 750MHz
L1 cache : 64 KByte
L2 cache : 8 MByte
Peak speed : 1500 Mflop/s Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

L1-cache
limit

L2-cache
limit

row version 8
times faster !

Note: Had to prevent the
compiler from transforming
the bad version into the
good version !

Where does this
come from ?

messy !

Performance
Tuning

36

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Comparison US-III and US-III Cu

0 1 10 100 1000 10000 100000 1000000
1

10

100

1000

SB1000 ROW
SB1000 COL
SF6800 ROW
SF6800 COL

Row version faster
on SB1000 !

Column version
faster on SF6800 !

Where do these differences
come from ?

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

Clock speed
scaling

SB1000 - US III @ 750 MHz
SF6800 - USIII Cu@ 900MHz

Performance
Tuning

37

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The effect of -xprefetch=yes

0 1 10 100 1000 10000 100000 1000000
1

10

100

1000

SF6800 ROW
SF6800 ROW pref
SF6800 COL
SF6800 COL pref

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

SF6800 – USIII Cu @ 900MHz
L1 cache : 64 KByte
L2 cache : 8 MByte
Peak speed : 1800 Mflop/s

Prefetch hides latency
to L2-cache

5 times faster
with prefetch !

Prefetch
slows down

Column version does not
really benefit from prefetch

WHY ?

Performance
Tuning

38

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Nothing is uniform

0 1 10 100 1000 10000 100000 1000000
0

1

10

100

Row version
Column version
Row version
(prefetch)
Clock ratio

Sp
ee

d-
up

 S
F6

80
0

ov
er

 S
B

10
00

row version

row version
(with prefetch)

column version

clock ratio is 1.2

Memory Footprint (KByte)

SB1000 - US III @ 750 MHz
SF6800 - USIII Cu@ 900MHz

✔ Very often we do not see
the clock ratio

✔ It is either higher or lower

✔ The row version without
prefetch is slower on the
SF6800 for large problems
(higher memory latency)

✔ Using prefetch on the row
version, the SF6800 is
much faster on large
problems

✔ The column version takes
advantage of the larger
TLB capacity in the US-III
Cu processor

Performance
Tuning

39

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®More about the TLB cache
❑ Total mapping capacity = #TLB entries * Page Size

✔ For example: 512 entries @ 8KB => 4 MB
❑ If an application suffers from excessive TLB misses:

● Use UltraSPARC-III Cu
● Use Solaris 9 with large page support:

✔ The ppgsz command is your friend
Total capacity using large pages is 2 GB !

✔ The pagesize command (with the -a option) will
show you which page size(s) your system
supports

✔ The pmap command can be used to check which
page size(s) the application is using

Performance
Tuning

40

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Using large pages with ppgsz *

0 1 10 100 1000 10000 100000 1000000
1

10

100

1000

SF6800 ROW pref
SF6800 COL pref
SF6800 ROW pref -
4MB
SF6800 COL pref -
4MB

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

9 times faster
with 4 MB pages !

1.5 times faster
with 4 MB pages

SF6800 – USIII Cu @ 900MHz
L1 cache : 64 KByte
L2 cache : 8 MByte
Peak speed : 1800 Mflop/s *) This command is available as of Solaris 9

Performance
Tuning

41

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Doing The Right Thing Helps

0 1 10 100 1000 10000 100000 1000000
0

50

100

150

200

250

300

350

400

450

500

550

600

SB1000 COL
SF6800 COL
SF6800 ROW pref -
4MB

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

✔ Correct memory access
✔ Latest processor
✔ Latest software
✔ Prefetch
✔ Large pages

Performance
Tuning

42

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Intro Performance Tuning

Performance
Tuning

43

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Performance Factors

Performance

Micro
processor

Features

Speed

Availability

System

Inter
connect

Latencies Data
B/W

Addr.
B/W

Config

#Procs

Memory
I/O

Software

Operating
System

Compilers

Libraries

User

Algorithm
Expertise

Experience

Time

Performance
Tuning

44

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Assembly Listing Example

/* 0x0820 79 (139 143) */ faddd %f38,%f62,%f28
/* 0x0824 143 (139 159) */ fdivd %f18,%f26,%f62
/* 0x0828 0 (139 140) */ add %l7,%o5,%o5
/* 0x082c 0 (140 141) */ prefetch [%o5+128],0
/* 0x0830 62 (141 143) */ ld [%fp-1080],%i0
/* 0x0834 0 (142 144) */ ld [%fp-1104],%o4
/* 0x0838 127 (142 146) */ fmuld %f22,%f32,%f32
/* 0x083c 124 (143 147) */ ldd [%fp-368],%f22
/* 0x0840 0 (144 146) */ ld [%fp-1024],%o5
/* 0x0844 0 (144 145) */ add %g3,%o4,%o4
/* 0x0848 0 (145 146) */ prefetch [%o4+128],2
/* 0x084c 62 (146 150) */ ldd [%g4+%i0],%f38
/* 0x0850 0 (146 147) */ add %l7,%o5,%o5
/* 0x0854 0 (147 148) */ prefetch [%o5+128],0
/* 0x0858 39 (148 150) */ ld [%fp-1116],%i0
/* 0x085c 0 (149 151) */ ld [%fp-1032],%o4
/* 0x0860 0 (150 152) */ ld [%fp-1120],%o5
/* 0x0864 39 (151 155) */ ldd [%g4+%i0],%f40

Performance
Tuning

45

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®What to tune ?

Execution time T = Ti + Td

Ti = Time to execute the instructions
Td = Time to move data in and out

Ti = Σinstructions * (# cycles/instruction)

Td = Σmemops * (# cycles/memop)

All these 4 components may be influenced
through optimization techniques

Performance
Tuning

46

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Instruction Execution Time

Ti = Σinstructions * (# cycles/instruction)
Requires

Feature Benefit hw sw

superscalar less cycles/inst + +

modulo scheduling more superscalar - +

code tuning less instructions - +

Performance
Tuning

47

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Moving Data

Td = Σmemops * (# cycles/memop)
Requires

Feature Benefit hw sw

caches less cycles/memop + +

prefetch less cycles/memop + +

code tuning less cycles/memop - +
less memops

Performance
Tuning

48

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Four Different Ways To Optimize
❑ Operating System features

● Effort: nothing, just use them
❑ Faster libraries

● Effort: relink your application
❑ The compiler

● Effort: read
❑ Source code changes

● Effort: "unlimited"

In practice one tends to use a
combination of all of these four

Performance
Tuning

49

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The Solaris Operating System
❑ Large Pages
❑ Single Thread Library
❑ Multi-threaded malloc
❑ Memory Placement Optimization
❑

Performance
Tuning

50

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Faster Libraries
❑ Faster intrinsics

● Examples: libmopt and libmvec
● Additional options to support this are available

❑ The Sun Performance Library
● Available in Fortran and C
● Highly tuned versions of BLAS 1-3, LAPACK
● Optimized Fast Fourier Transforms
● Many routines have been parallelized for shared

memory

Performance
Tuning

51

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

The Sun Compilers

(Sun ONE Studio Compiler Collection)

Performance
Tuning

52

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®
Developer Collection Portal

developers.sun.com

Compiler Collection

Performance
Tuning

53

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®
Compiler Collection Portal

Technical Info

Performance
Tuning

54

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Solaris is a 64-bit OS
❑ Solaris 7 (and above) is a full 64-bit operating system
❑ Implication: the address space of a single application

can be larger than 4 GB

64-bit drivers
64-bit kernel

32-bit libs

32-bit apps

64-bit libs

64-bit apps

Performance
Tuning

55

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Address =/= Data !
✔ Sun systems are 'byte

addressable'

✔ This means that memory can
be accessed at the byte level

✔ The size of the data type can
range from 1 byte to 16 bytes

✔ This means that for an 'n'
sized data type, the next
element is 'n' bytes further

✔ This increment has nothing
to do with the size of the
address (32-bit or 64-bit)

Address
char

int

double

char

32-bit limit (4GB)
00001111111

111111
011111

00....11
00....10
00....01
00....00

00011111111

01111111111
11111111111

float

char

Data

Performance
Tuning

56

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®ILP32 and LP64

C data type ILP32 LP64
(bits) (bits)

char 8 same
short 16 same
int 32 same
long 32 64
long long 64 same
pointer 32 64
enum 32 same
float 32 same
double 64 same
long double 128 same

Performance
Tuning

57

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®About aliasing
❑ This function very much looks like a vector update:

❑ However, the C compiler has to assume p, q and r
overlap

❑ This is referred to as "the aliasing problem"
❑ Only the programmer will know whether this overlap is

true or not

void vadd(int n, float *p, float *q, float *r)
{
 int i;

 for (i=0; i<n; i++)
 *p++ = *q++ + *r++;
}

Performance
Tuning

58

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®About overlap/1
void vadd(int n, float *p, float *q, float *r)
{
 for (i=0; i<n; i++)
 *p++ = *q++ + *r++;
}

(void) vadd(n, &a[1], &a[0], &r[0])

void vadd(n, &a[1], &a[0], &r[0])
{
 for (i=0; i<n; i++)
 a[i+1] = a[i] + r[i];
}

Performance
Tuning

59

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®About overlap/2
void vadd(n, &a[1], &a[0], &r[0])
{
 for (i=0; i<n; i++)
 a[i+1] = a[i] + r[i];
}

a[i+1] = a[i] + r[i];

a[i+2] = a[i+1] + r[i+1];

a[i+3] = a[i+2] + r[i+2];

Use the -xrestrict option if pointers do not overlap*

Data
Dep

en
den

cy

*) One can also use a pragma for this

Performance
Tuning

60

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Aliasing
❑ The example just shown is a classical aliasing problem
❑ The C compiler has to assume that different pointers

may overlap *
● Correct, but non-optimal, code will be generated
● The programmer may know that there is no overlap

❑ How to inform the compiler there is no overlap:
● Use the -xrestrict option
● Put a pipeloop pragma/directive in the source

❑ However, remember that you are then responsible that
the underlying assumption is not violated !

*) Note that in Fortran this would be illegal if the names of the arrays are different

Performance
Tuning

61

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The -fast macro expansion

Common options
(Fortran, C, C++)

Fortran

Note: Valid for the 7.0 release

 -xtarget=native
 -xO5
 -fns
 -fsimple=2
 -dalign
 -xlibmil

 -xprefetch_level=2
 -xvector=yes
 -pad=local
 -xlibmopt
 -ftrap=common

 -xprefetch_level=1
 -fsingle
 -xbuiltin=%all
 -xalias_level=basic
 -ftrap=%none

 -xbuiltin=%all
 -xlibmopt
 -ftrap=%none

 -xdepend
 -xprefetch=yes

Additional options
(Fortran, C)

C
C

++

Performance
Tuning

62

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Instruction set and chip
❑ For best performance, one should:

● Use the most powerful SPARC Architecture
Instruction Set available today (-xarch option)
✔ Impacts performance and backward compatibility

● Ask the compiler to tune for the UltraSPARC-II (or III)
processor (-xchip option)
✔ Impacts performance only

❑ The compiler takes defaults for this *, but we recommend
to specify this explicitly

*) The compiler defaults depend on the system that you compile on

Performance
Tuning

63

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Minimal Effort

-fast -xchip=ultra3cu -xarch=v8plusb
-fast -xchip=ultra3cu -xarch=v9b

In general, one obtains very good performance out of the
Sun compilers by just using 3 options on the compile and
link line:

For the UltraSPARC-III Cu processor:
(32-bit addressing)
(64-bit addressing)

♦ The -fast option is a macro that expands to a series of options
♦ Purpose of -fast is to give you very good performance with just

one single option
♦ Works fine for many applications, but does make some

assumptions. When in doubt whether this is acceptable, one is
advised to check the documentation about the details.

Performance
Tuning

64

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Recommendation

Fragment from make file:

ISA = -xarch=v8plusb
CHIP = -xchip=ultra3cu
CACHE = -xcache=64/32/4:8192/512/2
FFLAGS = -fast $(ISA) $(CHIP) $(CACHE)

This will ensure that the settings desired are not implicitly
overruled through the -fast option

Performance
Tuning

65

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The effect of compiler optimizations

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

16

18

20

22

Job ID

Sp
ee

d-
up

 o
n

SF
68

00

SF6800 - USIII Cu@ 900MHz
S1SCC 7.0
Solaris 9

♦Ten real user codes
✔ Chemistry
✔ Physics
✔ Mathematics

♦Identified by Job ID
✔ Different

versions
✔ Different jobs

♦Compiled and ran:
✔ No optimization
✔ Full optimization

♦Plot ratio of times

average

stdev
stdev

Performance
Tuning

66

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Compiler Components
source

f95

Intermediate Representation
(IR)

CG : Code Generator and
Instruction Level Optimizer

source source
cc CC

IRopt

CG

object
file

driver

important for
performance

Performance
Tuning

67

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Who Does What ?
Pe

rf
or

m
an

ce

Problem size
L1Reg. L2 Main Memory Virtual memory

IRopt

CG High-level transformations

Instruction generation and scheduling

Performance
Tuning

68

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Example: Matrix * vector product

= *

= *

Good Memory Access
2 Loads

Bad Memory Access
2 Loads and 1 Store

+
+

for (i=0; i<m; i++)
{
 sum = 0.0;
 for (j=0; j<n; j++)
 sum += b[i*n+j]*c[j];
 a[i] = sum;

 }

for (i=0; i<m; i++)
 a[i] = b[i*n]*c[0]

for (j=1; j<n; j++)
 for (i=0; i<m; i++)

 a[i] += b[i*n+j]*c[j];

j

i

Performance
Tuning

69

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Matrix * vector - Unoptimized

0 1 10 100 1000 10000 100000 1000000
0

5

10

15

20

25

30

35

40

45

50

Row (no opt)
Column (no opt)

Memory Footprint(KB)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

L1 cache
size limit

L2 cache
size limit

row version

column version

✔ Absolute
performance is
poor

✔ Row version is
always faster

✔ Row version is
about 2.5x faster
on large problems

SF6800 - USIII Cu@ 900MHz
S1SCC 8.0
Solaris 9

Performance
Tuning

70

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0.1 1 10 100 1000 10000 100000 1000000
0

50

100

150

200

250

300

350

400

450

500

550

600

650
Row (no opt)
Row (opt)
Column (no opt)
Column (opt)

Memory Footprint(KB)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

Matrix * vector product - Optimized
Both versions perform more or less the same now !

Main difference is in the
memory access pattern
and prefetch (iropt + cg)

Main difference is
in the scheduling

(cg)

SF6800 - USIII Cu@ 900MHz
S1SCC 8.0
Solaris 9

Options:
 -fast -xrestrict -xprefetch_level=3

Performance
Tuning

71

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Compiler Commentary
❑ Get information about the optimizations performed:

● Loop transformations (iropt phase)
● Instruction scheduling (cg phase)

❑ How to get these messages:
● Add -g to the other compiler options you use
● Example: % cc -c -fast -xarch=v8plusb -g funcA.c

❑ Two ways to display the compiler messages:
● Use the er_src command to display the messages

on the screen
✔ Example: % er_src funcA.o

● Automatically shown in analyzer source window

Performance
Tuning

72

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Example Compiler Optimizations
 1. void mxv_col(int m, int n, double *a, double *b, double *c)
 2. {
 3. int i, j;
 4.
 Loop below fused with loop on line 10
 5. for (i=0; i<m; i++)
 6. a[i] = b[i*n]*c[0];
 7.
 Loop below interchanged with loop on line 10
 8. for (j=1; j<n; j++)
 9. {
 Loop below interchanged with loop on line 8
 Loop below fused with loop on line 5
 10. for (i=0; i<m; i++)

 Loop below pipelined with steady-state cycle count = 2
 before unrolling
 Loop below unrolled 8 times
 Loop below has 2 loads, 0 stores, 4 prefetches, 1 FPadds,
 1 FPmuls, and 0 FPdivs per iteration
 11. a[i] += b[i*n+j]*c[j];
 12. }
 13. }

IRopt messages

CG messages

Performance
Tuning

73

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Matrix * vector: Sun Perf. Library

0.1 1 10 100 1000 10000 100000 1000000
0

100

200

300

400

500

600

700

800

900

1000

1100

Row (no opt)
Row (opt)
Column (no opt)
Column (opt)
Library-version

Memory Footprint(KB)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

SF6800 - USIII Cu@ 900MHz
S1SCC 8.0
Solaris 9

Library version
has been tuned

very well

Performance
Tuning

74

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

The Sun Performance Analyzer

Performance
Tuning

75

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Statistical Callstack Sampling

➊ The program is
stopped at regular
intervals

11101110
11111110
10111100
00111010

11011011
01011100

11100110
10101010
10011011
10001111

00110111
00001100
00000001
11010110

The program

main

sub1

sub2

sub3

➋ The Program Counter (PC)
and other information is
recorded when the program
stops

➌ A histogram with the
execution time distribution is
produced

main

sub2

sub3

sub1

10

5

4

1

Execution time Name

Performance
Tuning

76

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The Performance Analyzer
❑ Worldclass Product ! Very Easy To Use !
❑ Supports multi-threaded programs
❑ Uses statistical callstack sampling

● Clock-based
● Hardware counter-based: memory and cache counters
● Synchronization wait tracing

❑ Offers top to bottom performance data:
● Routine level
● Statement level
● Instruction level
● Caller and callee level

❑ All this information can be obtained in a single run !

Performance
Tuning

77

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Caller-callee info

10

5 15

20
Example:

Exclusive time - Time spent in
routine, excluding time spent calling
other routines

Inclusive time -Time spent in routine,
including time spent in other routines

Exclusive time : 5 seconds
Inclusive time : 5+20+10=35 seconds

The Performance Analyzer accurately
attributes the time the multiple callers of
this leaf routine contribute to the total

10
40

50

Performance
Tuning

78

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®How To Use The Analyzer
❑ Works with unmodified binaries
❑ For the most complete information: recompile with -g
❑ Three ways of using the Performance Analyzer* :

● Through the collect/analyzer commands:
% collect - gather the performance data
% analyzer - GUI to analyze the data

● Through the Integrated Development Environment:
% runide.sh

● Through dbx (not covered here)
❑ Optional: use the er_print command to analyze the data

and get the information in ASCII format

*) The default path is /opt/SUNWspro/bin

covered here

Performance
Tuning

79

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The collect command/1
% collect
NOTE: SunOS 5.8 system "hpc" is correctly patched and set up for use with the
 Performance tools.

 usage: collect <args> target <target-args>

 Sun Performance Tools 7.1 Dev 2003/01/08
 -p <interval> specify clock-profiling
 Clock profiling interval range on this system = 0.500 - 1000.000 millisec.;
 resolution = 0.001 millisec.
 -s <threshold> specify synchronization wait tracing
 -H {on|off} specify heap tracing
 -m {on|off} specify MPI tracing
 -h <counter>[,<interval>[<counter2>[,<interval2>]]] specify HW counter profiling
If <counter2> is specified, <counter> and <counter2> must be on different registers
For counters that count load or store instructions, if the counter name is preceeded by +,
the collector attempts to determine the PC and virtual address of the triggering load or
store; the + is ignored for counters not counting loads or stores
 HW counters available for profiling:

 CPU Cycles (cycles = Cycle_cnt/*) 9999991 hi=1000003, lo=100000007
 Instructions Executed (insts = Instr_cnt/*) 9999991 hi=1000003, lo=100000007
 I$ Misses (icm = IC_miss/1) 100003 hi=10007, lo=1000003
 D$ Read Misses (dcrm = DC_rd_miss/1) 100003 hi=10007, lo=1000003 ld
 D$ Write Misses (dcwm = DC_wr_miss/1) 100003 hi=10007, lo=1000003 st
 D$ Read Refs (dcr = DC_rd/0) 1000003 hi=100003, lo=9999991 ld
 D$ Write Refs (dcw = DC_wr/0) 1000003 hi=100003, lo=9999991 st
 E$ Refs (ecref = EC_ref/0) 1000003 hi=100003, lo=9999991 ld-st

 etc

Performance
Tuning

80

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The collect command/2
 etc
 -j {on|off} specify Java profiling
 -x specify leaving the target waiting for a debugger attach
 -n dry run -- don't run target or collect performance data
 -y <signal>[,r] specify delayed initialization and pause/resume signal
 When set, the target starts in paused mode;
 if the optional r is provided, it starts in resumed mode
 -F {on|off} specify following descendant processes
 -A {on|off|copy} specify archiving of load-objects; default is on
 -S <interval> specify periodic sampling interval (secs.)
 -L <size> specify experiment size limit (MB.)
 -l <signal> specify signal for samples
 -o <expt> specify experiment name
 -d <directory> specify experiment directory
 -g <groupname> specify experiment group
 -v print expanded log of processing
 -R show the README file and exit
 -V print version number and exit

 Default experiment:
expt_name = test.1.er
clock profiling enabled, 10.007 millisec.
descendant processes will not be followed
periodic sampling, 1 secs.
experiment size limit 2000 MB.
experiment archiving: on
data descriptor: "p:10007;S:1;L:2000;A:1;"
host: `hpc', cpuver = 1002, ncpus = 2, clock frequency 750 MHz.

see the collect.1 man page for more information

Performance
Tuning

81

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Start the Analyzer
Assume you have used “collect” to run one or more
performance experiments

For example, like this: % collect a.out

Now, start the analyzer and load the experiment(s) you're
interested in:

% analyzer

You can also load the
experiment(s) directly

% analyzer “exp_name(s)”

Within the analyzer, experiments
can also be dropped and reloaded

There are three
experiments here

Performance
Tuning

82

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Main Analyzer Window

Performance
Tuning

83

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Information On Experiment(s)

Performance
Tuning

84

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Statistics

Performance
Tuning

85

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Filters and Metrics Selection

Note:
Favourite metrics
can be saved

Filter data

Select data

Performance
Tuning

86

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Callers-Callees Information

Performance
Tuning

87

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®From Source Line

Note the compiler message
(more on this later)

Most expensive
statement

Performance
Tuning

88

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Down To The Instruction Level !

Performance
Tuning

89

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Timeline Overview

Zoom in
and outSelects an event

Color Chooser

Performance
Tuning

90

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Zoom In On Timeline

Can change
colors

Performance
Tuning

91

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Timeline For A Parallel Program

Two threads
have been used

Thread is idle

Performance
Tuning

92

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Serial Optimization
Techniques

Performance
Tuning

93

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Who Does What ?
Pe

rf
or

m
an

ce

Problem size
L1Reg. L2 Main Memory Virtual memory

IRopt

CG High-level transformations

Instruction generation and scheduling

Performance
Tuning

94

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Modulo Scheduling

Performance
Tuning

95

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Example

for (i=0; i<n; i++)
{
 ...statements ...
}

0
1
2
3
4
5

Program Instructions*

Executed serially, this loop
would need 6*n cycles to be
run

*) Assume each instruction
takes 1 cycle to execute

Performance
Tuning

96

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Terminology

0
1
2
3
4
5

1 2 3 4 5 6

0
1
2
3
4
5

0
1
2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3
4
5

loop iteration

II (Iteration Interval)

Prologue = (SC-1)*II

Kernel/Steady State
(one iteration every II cycles)

Epilogue

T
im

e
in

 c
yc

le
s

Performance
Tuning

97

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The Goal of Modulo Scheduling
The time T(n) it takes to execute n loop iterations:

T(n) = (n-1) * II + SC * II = n * II + (SC-1) * II

The time per loop iteration:

T(n) / n = II + (SC-1)*II / n II (for n large)

II
II

II
II

II

(n-1)*II

SC*II

Find a minimal value for II, such that the kernel part of
the loop delivers an asymptotic speed of II cycles per
loop iteration

The Goal

Performance
Tuning

98

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®About the II value*
❑ Use the II value to judge the quality of the instruction

scheduling
❑ Care should be taken when considering the II value:

● It is a theoretical (static) estimate by the compiler
● Memory is assumed to be "close by"
● Other factors, like a TLB miss, are not taken into

account
❑ One should not expect to measure a performance

based on the II value across all memory footprints

*) The II value is also called "Steady-State Cycle Count"

Performance
Tuning

99

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Modulo Scheduling at work
❑ The Modulo Scheduler tries to:

● Exploit the superscalar architecture
● Hide the instruction latencies:

Note that this works best
with pipelined instructions

for (i=0; i<n; i++)
 sum += x[i]*y[i];

for (i=0; i<n; i+=4){
 sum0 += x[i]*y[i];
 sum1 += x[i+1]*y[i+1];
 sum2 += x[i+2]*y[i+2];
 sum3 += x[i+3]*y[i+3];
}
sum = sum0+sum1+sum2+sum3;

Performance
Tuning

100

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Example Latency Hiding
Fragment from an assembly listing (US-II):

Initiate Finish Instruction

18 26 ld [%o2],%f24
18 19 add %o0,5,%o0
18 19 add %o2,20,%o2
18 21 fmuls %f8,%f16,%f22

19 19 cmp %o0,%o4
19 27 ld [%o1],%f8
19 20 add %o1,20,%o1
19 22 fadds %f21,%f18,%f18

20 23 fmuls %f6,%f14,%f21
20 28 ld [%o2-16],%f16

21 29 ld [%o1-16],%f6
21 24 fadds %f20,%f22,%f22

Performance
Tuning

101

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Loop Based Optimizations

Performance
Tuning

102

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Cache Line Utilization

● Spatial Locality - Use all data in one cache line

✔ This strongly depends on the storage of your data
and the access pattern(s)

● Temporal Locality - Re-use data in a cache line

✔ This mainly depends on the algorithm used

Two Key Rules - Maximize

Performance
Tuning

103

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Cache line re-use
✔ On the left we show a typical 'vector' style

of coding

✔ It is not a good approach for cache based
systems: all grid elements have to be
reloaded for each loop

Lo
op

 2

✔ It is more beneficial to (pre-) calculate
expressions on the already loaded grid
points

Lo
op

 1

Performance
Tuning

104

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Loop Interchange

for (j=0; j<n; j++)
 for (i=0; i<m; i++)
 a[i][j]=b[i][j]+c[i][j];

Interchange
loops

♦ All 3 matrices are
accessed over the
columns first

♦ In C, this is the wrong
access order

♦ Interchanging the
loops will solve the
problem

♦ In Fortran, the
situation is reversed:
● column access is okay
● row access is bad

for (i=0; i<m; i++)
 for (j=0; j<n; j++)
 a[i][j]=b[i][j]+c[i][j];

Performance
Tuning

105

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Compiler Output

 Loop below interchanged with loop on line 6
 Loop below pipelined with steady-state cycle
 count = 2 before unrolling
 Loop below unrolled 4 times
 Loop below has 2 loads, 1 stores, 3 prefetches,
 1 FPadds, 0 FPmuls, and 0 FPdivs per iteration
 5. for (j=0; j<n; j++)

 Loop below interchanged with loop on line 5
 6. for (i=0; i<m; i++)
 7. a[i][j] = b[i][j] + c[i][j];

Options: -fast -xdepend -xrestrict

Performance
Tuning

106

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Loop Fission - Example

for (j=0; j<n; j++)
 c[j] = exp(j/n);

for (j=0; j<n; j++)
 for (i=0; i<m; i++)
 a[i][j]=b[i][j]+d[i]*e[j];

New loop created

for (j=0; j<n; j++)
{
 c[j] = exp(j/n);
 for (i=0; i<m; i++)
 a[i][j]=b[i][j]+d[i]*e[j];
}

♦ Access on arrays 'a'
and 'b' is bad

♦ We can not simply
interchange the loops

♦ Fission/splitting is the
solutionFission

This loop can now
also be vectorized

Interchange loops for
better performance

Performance
Tuning

107

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Compiler Output

Loop below fissioned into 2 loops
Loop below interchanged with loop on line 11
Loop below strip-mined
Loop below transformed to use calls to vector intrinsic __vexp_
Loop below pipelined with steady-state cycle count = 3 before
unrolling
Loop below unrolled 4 times
Loop below has 2 loads, 1 stores, 0 prefetches, 1 FPadds, 1 FPmuls,
and 0 FPdivs per iteration
 8. for (j=0; j<n; j++)
 9. {
 10. c[j] = exp(j/n);

Loop below interchanged with loop on line 8
 11. for (i=0; i<m; i++)
 12. a[i][j] = b[i][j] + d[i]*e[j];
 13. }

Options: -fast -xdepend -xrestrict -xvector

Performance
Tuning

108

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Loop Fusion - Example
for (i=0; i<n; i++)
 a[i] = 2 * b[i];

Fusion

Note that it is possible to apply
fusion to loops with (slightly)
different boundaries

In such a case, some iterations
will have to be 'peeled' off

for (i=0; i<n; i++)
{
 a[i] = 2 * b[i];
 c[i] = a[i] + d[i];
}

for (i=0; i<n; i++)
 c[i] = a[i] + d[i];

♦ Assume that 'n' is large
♦ In the second loop, a[i]

will no longer be in the
cache

♦ Fusing the loops will
ensure a[i] is still in the
cache when needed

Performance
Tuning

109

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Compiler Output

 Loop below fused with loop on line 8
 Loop below pipelined with steady-state cycle count = 2
 before unrolling
 Loop below unrolled 8 times
 Loop below has 2 loads, 2 stores, 8 prefetches, 1 FPadds,
 1 FPmuls, and 0 FPdivs per iteration
 6. for (i=0; i<n; i++)
 7. a[i] = 2 * b[i];

 Loop below fused with loop on line 6
 8. for (i=0; i<n; i++)
 9. c[i] = a[i] + d[i];

Options: -fast -xdepend -xrestrict

Performance
Tuning

110

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Loop Fission and Fusion

for(i=0;i<n;i++)
{
 ... [i] ...
}

Fission

Fission
✔ Reduce register pressure
✔ Enable loop interchange
✔ Isolate dependencies
✔ Increase opportunities for

optimization (e.g.
vectorization of intrinsics)

Fusion
✔ Reduce cache reloads
✔ Increase Instruction Level

Parallelism (ILP)
✔ Reduce loop overhead

for(i=0;i<n;i++)
{
 ... [i] ...
}

for(i1=0;i1<n;i1++)
{
 ... [i1] ...
}

for(i2=0;i2<n;i2++)
{
 ... [i2] ...
}

Fusion

Performance
Tuning

111

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Inner Loop Unrolling - Example
Through unrolling, the loop overhead ('book keeping') is reduced

for (i=0; i<n; i++)
 a[i] = b[i] + c[i];

Loop is unrolled
with a factor of 4

Addresses : 3
Loads : 2
Stores : 1
FP Adds : 1
I=I+1
Test I < N ?
Branch
Addr. incr: 3

for (i=0; i<n; i+=4)
{
 a[i] = b[i] + c[i];
 a[i+1] = b[i+1] + c[i+1];
 a[i+2] = b[i+2] + c[i+2];
 a[i+3] = b[i+3] + c[i+3];
}
<clean-up loop>

Addresses : 3
Loads : 8
Stores : 4
FP Adds : 4
I=I+4
Test I < N ?
Branch
Addr. incr: 3

Work: 4
Overhead: 9

Work: 16
Overhead: 9

Note: the amount of addressing needed in reality is less

Performance
Tuning

112

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Compiler Output

 Loop below pipelined with steady-state cycle count = 2
 before unrolling
 Loop below unrolled 4 times
 Loop below has 2 loads, 1 stores, 3 prefetches, 1 FPadds,
 0 FPmuls, and 0 FPdivs per iteration
 6. for (i=0; i<n; i++)
 7. a[i] = b[i] + c[i];

Options: -fast -xdepend -xrestrict

Performance
Tuning

113

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

for (i=0; i<m; i+=4)
 for(j=0; j<n; j++)
 {
 a[i] += b[i][j] * c[j];
 a[i+1] += b[i+1][j] * c[j];
 a[i+2] += b[i+2][j] * c[j];
 a[i+3] += b[i+3][j] * c[j];
 }
<clean-up loop>

Outer Loop Unrolling - Example

I
I+1

I+2

I+3

J J+1 J+2 J+3

♦ Advantage:
● c[j] is re-used 3 more times (temporal locality)

♦ Deeper unrolling, say 8, requires more fp registers
(17 instead of 9), but improves re-use of c[j]

Performance
Tuning

114

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Compiler Output

 Loop below unrolled and jammed
 5. for (i=0; i<m; i++)

 Loop below unrolled and jammed
 Loop below pipelined with steady-state cycle count = 2
 before unrolling
 Loop below unrolled 8 times
 Loop below has 2 loads, 0 stores, 4 prefetches,
 1 FPadds, 1 FPmuls, and 0 FPdivs per iteration
 6. for (j=0; j<n; j++)

 Loop below pipelined with steady-state cycle count = 9
 before unrolling
 Loop below unrolled 4 times
 Loop below has 9 loads, 0 stores, 8 prefetches,
 8 FPadds, 8 FPmuls, and 0 FPdivs per iteration
 7. a[i] += b[i][j]*c[j];

Options: -fast -xdepend -xrestrict

outer loop unrolling

inner loop unrolling

inner loop unrolling

Performance
Tuning

115

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

for (i=0; i<m-m%4; i+=4)
 for(j=0; j<n; j++)
 {
 a[i] += b[i][j] * c[j];
 a[i+1] += b[i+1][j] * c[j];
 a[i+2] += b[i+2][j] * c[j];
 a[i+3] += b[i+3][j] * c[j];
 }
for (i=m-m%4; i<m; i++)
 for(j=0; j<n; j++)

a[i] += b[i][j] * c[j];

Unroll and Jam
for (i=0; i<m; i++)
 for(j=0; j<n; j++)
 a[i] += b[i][j] * c[j];

for (i=0; i<m-m%4; i+=4)
{
 for(j=0; j<n; j++)
 a[i] += b[i][j] * c[j];
 for(j=0; j<n; j++)
 a[i+1] += b[i+1][j] * c[j];
 for(j=0; j<n; j++)
 a[i+2] += b[i+2][j] * c[j];
 for(j=0; j<n; j++)
 a[i+3] += b[i+3][j] * c[j];
}
for (i=m-m%4; i<m; i++)
 for(j=0; j<n; j++)
 a[i] += b[i][j] * c[j];

Outer loop
unrolling

clean-up loop

clean-up loop

Jam the loops
together again

Unroll and Jam

Performance
Tuning

116

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Loop Blocking - Example

for (j=0; j<n; j++)
 for (i=0; i<n; i++)
 b[j][i] = a[i][j];

Transposing a matrix

B
A

♦ Loop interchange will not help here:
● Role of 'a' and 'b' will only be interchanged

♦ Change of programming language won't help either
♦ Unrolling the i-loop can be beneficial, but requires more

registers and doesn't address TLB-misses
♦ Loop blocking achieves good memory performance,

without the need for additional registers

Performance
Tuning

117

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Loop Blocking - Example

for(i1=0; i1<n; i1+=nbi)
 for (j=0; j<n; j++)
 for (i2=0;i2<MIN(n-i1,nbi);i2++)
 b[j][i1+i2] = a[i1+i2][j];

Blocking and interchanging the I-loop
i

j

nbi

storage order

♦ Parameter 'nbi' is the blocking size
♦ Should be chosen as large as possible
♦ Actual value depends on the cache to block for:

✔ L1-cache
✔ L2-cache
✔ TLB
✔

do i = 1, n

do i1 = 1, n, nbi
 do i2 = 0,min(n-i1+1,nbi)-1

Fortran

Performance
Tuning

118

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Introduction Into
Parallelization

Performance
Tuning

119

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®What is parallelization ?
❑ Parallelization is simply another optimization technique

to get your results sooner
❑ To this end, more than one processor is used to solve

the problem
❑ The "elapsed time" (also called wallclock time) will

come down, but the total CPU time will probably go up
❑ The latter is a difference with serial optimization, where

one makes better use of existing resources i.e. the cost
will come down

Performance
Tuning

120

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

The Name Of The Game

Performance
Tuning

121

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®What is parallelization ?

An attempt to give you a sort of definition:

"Something" can be:

"Something" is parallel if there is a certain level of
independence in the order of operations

A collection of program statements
An algorithm
A part of your program
The problem you're trying to solve

granularity

Performance
Tuning

122

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®What is a thread ?
 Loosely said, a thread consists of a series of instructions

with it's own program counter (PC) and state

 A parallel program will execute threads in parallel

 These threads are then scheduled onto processors

.....

.....

.....

.....

.....

.....

.....

.....

Thread 0

.....

.....

.....

.....

.....

.....

.....

.....

Thread 1

.....

.....

.....

.....

.....

.....

.....

.....

Thread 2

.....

.....

.....

.....

.....

.....

.....

.....

Thread 3

P P

PC
PC

PC

PC

Performance
Tuning

123

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Parallel Overhead
❑ The total CPU time may exceed the serial CPU time:

● The newly introduced parallel portions in your
program need to be executed

● Processors need time sending data to each other
and synchronizing (“communication”)
✔ Often the key contributor, spoiling all the fun

❑ Typically, things also get worse when increasing the
number of processors

❑ Efficient parallelization is about minimizing the
communication overhead

Performance
Tuning

124

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Communication
Serial

Execution

W
al

lc
lo

ck
 ti

m
e

Parallel - Without
communication

Parallel - With
communication

 Embarrassingly
parallel: 4x faster

 Wallclock time is ¼ of
serial wallclock time

 Additional communication

 Less than 4x faster

 Consumes additional resources

 Wallclock time is more than ¼
of serial wallclock time

 Total CPU time increases

Communication

Performance
Tuning

125

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Load balancing
T

im
e

Perfect Load Balancing Load Imbalance

All CPUs finish in the same
time

No CPU is idle

CPU is idle

Different CPUs need a different
amount of time to finish their
task

Total wall clock time increases

Program will not scale well

Performance
Tuning

126

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Dilemma

Parallelization at the highest () level:
✔ Low communication cost
✔ Limited to 5 processors only
✔ Potential load balancing issue

Parallelization at the lowest () level:
✔ Higher communication cost
✔ Not limited to a certain number of processors
✔ Load balancing probably less of an issue

Performance
Tuning

127

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®About scalability
 Define the speed-up S(P) as

S(P) := T(1)/T(P)

 The efficiency E(P) is defined as
E(P) := S(P)/P

 In the ideal case, S(P)=P and
E(P)=100%

 Unless the application is
embarrassingly parallel, S(P) will
start to deviate from the ideal curve

 Past this point P
opt

, the application
will get less and less benefit from
adding processors

 Note that both metrics give no
information on the actual run-time

 As such, they can be dangerous to
use

Ideal

Sp
ee

d-
up

 S
(P

)

PP
opt

In some cases, S(P) will exceed P

This is called "superlinear" behaviour

Don't count on this to happen though

Performance
Tuning

128

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Amdahl's Law

Comments:

☞ This "law' describes the effect that the non-parallelizable part of a
program has on scalability

☞ Note that the additional overhead caused by parallelization and
speed-up because of cache effects are not taken into account

S(P) := T / T(P) = 1 / (f/P + 1-f)

Assume our program has a parallel fraction “f”

This implies the execution time T := f*T + (1-f)*T

On P processors: T(P) = (f/P)*T + (1-f)*T

Amdahl's law:

Performance
Tuning

129

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Amdahl's law
 It is easy to scale on a

small number of
processors

 Scalable performance
however requires a
high degree of
parallelization i.e. f is
very close to 1

 This implies that you
need to parallelize that
part of the code where
the majority of the time
is spent

 Use the performance
analyzer to find these
parts1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1.00
0.99
0.75
0.50
0.25
0.00

Value for f:

Processors

Sp
ee

d-
up

Performance
Tuning

130

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Amdahl's Law In Practice

f = (1 - T(P)/T)/(1 - (1/P))

We can estimate the parallel fraction “f”

Recall: T(P) = (f/P)*T + (1-f)*T

It is trivial to solve this equation for “f”:

Example:

T = 100 and T(4)=37 => S(4) = T/T(4) = 2.70
f = (1-37/100)/(1-(1/4)) = 0.63/0.75 = 0.84 = 84%

Estimated performance on 8 processors is then:

T(8) = (0.84/8)*100 + (1-0.84)*100 = 26.5
S(8) = T/T(8) = 3.78

Performance
Tuning

131

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Numerical Results

Consider:
A = B + C + D + E

Serial Processing Parallel Processing
CPU 1 CPU 2

☞ The roundoff behaviour is different and so the numerical
results may be different too

☞ This is natural for parallel programs, but it may be hard to
differentiate it from an ordinary bug

A = B + C

A = A + D

A = A + E

T1 = B + C

T1 = T1 + T2

T2 = D + E

Performance
Tuning

132

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Cache Coherency

Performance
Tuning

133

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Cache line modifications

Main Memory

Caches

modifications

How to handle the problem of multiple copies of a line ?

Performance
Tuning

134

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Cache Organization
❑ A cache contains a partial image of memory
❑ If data gets modified, the state of that data changes
❑ This has to be made known to the system
❑ Two popular approaches are:

● Write-through
● Write-back

Performance
Tuning

135

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Write-Through
❑ Always flush a modified cache line back to a higher

level in the memory hierarchy
● For example, write a modified line back from the L1 cache to

main memory

❑ In this way, the system will always know where to get
the correct cache line from

Level N
Level N+1

identical
cache lines

Comments:

 Relatively simple to implement

 Easy to find the right copy

 May waste bandwidth though

Performance
Tuning

136

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Write-Back
❑ Only write a modified cache line back if needed

● Capacity issue
● Other cache line maps onto existing line
● Other CPU needs this cache line

Level N

Level N+1

same line, but might
be in a different state

Comments:

 Minimizes cache traffic

 Need to keep track of status though

 The mechanism to do this is called
cache coherency

Performance
Tuning

137

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Caches in an MP system
❑ A cache line starts in

memory
❑ Over time multiple copies

of this line may exist

Cache Coherency ("cc"):
✔ Tracks changes in copies
✔ Makes sure correct cache

line is used
✔ Different implementations

possible
✔ Need hardware to make it

efficient

Processors Caches Memory

2. modify

1. copy

1. copy

3. invalidate

3. invalidate
CPU 0

CPU 1

CPU 2

CPU 3

Performance
Tuning

138

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Cache Coherency ("cc")
❑ Needed in a write-back cache organization
❑ Keeps track of the status of cache lines
❑ This is called the "state" information

❑ The system uses signals ("coherency traffic") to update
the status bits of cache lines

❑ Cache Coherency is a very convenient feature to have
❑ It makes it possible to build efficient shared memory

parallel systems

data state bits 000 = clean
001 = shared
010 = dirty
100 = invalid

Performance
Tuning

139

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Snoopy based cache coherence
❑ Also called "Broadcast" cache coherence

● All addresses sent to all devices
● Result of the snoop is computed in a few cycles

❑ Advantages:
● Low latency in general
● Fast cache-to-cache

transfers

❑ Disadvantage
● Data bandwith limited by

snoop bandwidth
● Difficult to scale to a large

number of processors

Inter
connect

P

P

P

P

snoop

snoop
snoop

snoop

Performance
Tuning

140

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Directory based cache coherence
❑ Also called SSM (Scalable Shared Memory)
❑ This is a point-to-point protocol
❑ Through a directory, the system keeps track which

processor(s) are involved in a particular line
❑ Address requests sent to specific caches only
❑ Advantages:

● Bandwidth can be much greater
● Scalable to large processor count

❑ Disadvantages
● Latency is usually longer and no longer uniform
● Slower cache-to-cache transfers
● Need to store the additional directory entries

Performance
Tuning

141

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Example SSM
data state bits bit vector

0 1

Inter
connectP2

P3

P0

P4

P7P1

P5

P6

1 0 11 00 0

modified

invalidate

invalidate
invalidate

Performance
Tuning

142

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Programming Models

Performance
Tuning

143

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Shared Memory Model

P
local

P
local

P
local

P
local

P
local

Programming Model

Memory

Sun ONE Studio
Compiler Collection

This programming model
makes it relatively (!) easy to
develop auto-parallelizing
compilers

✔ All processors have access to
the same, global, memory

✔ Data transfer is transparent to
the programmer

✔ Synchronization takes place,
but it is mostly implicit

✔ By default, data is shared (but
one needs local data too)

Performance
Tuning

144

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®About data
You may not have realized this before, but in a shared

memory parallel program your variables have a "label"
attached to them:

☞ Labelled "Private" ⇨ Visible to you only
✔ Change made in local data, is not seen by others
✔ Example - Local variables in a function that is

executed in parallel
☞ Labelled "Shared" ⇨ Visible to others

✔ Change made in global data, is seen by all others
✔ Example - Global data

Performance
Tuning

145

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Distributed Memory Model

P
local

P
local

P
local

P
local

P
local

Programming Model

HPC Clustertools

Interconnect

This programming model
makes it very hard to develop
auto-parallelizing compilers

✔ All processors have access
to their own, local, memory
only

✔ Data transfer and most
synchronization has to be
programmed explicitly

✔ By default, data is local

✔ Data is shared explicitly by
exchanging buffers

Performance
Tuning

146

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Parallel Architectures

Performance
Tuning

147

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The Debate
❑ There is an on-going debate about labelling systems:

● It is hard to classify architectures in the first place
● Most systems share some characteristics, but not all

✔ For example, when do we call a system cc-NUMA ?
Even a cache based workstation might qualify ...

❑ In the overview we're going to present, we will classify
systems based on Main Memory:
● Shared or Distributed ?

✔ Can all processors access all of memory, or a
subset only ?

● Memory access time(s)

Performance
Tuning

148

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Uniform Memory Access (UMA)
❑ Also called "SMP"

(Symmetric Multi
Processor)

❑ Memory Access time is
Uniform for all CPUs

❑ Interconnect is "cc":
● Bus
● Crossbar

❑ No fragmentation -
Memory and I/O are
shared resources

Memory I/O

cache

CPU

✔ Easy to use and to administer

✔ Efficient use of resources

✔ Said to be expensive

✔ Said to be non-scalable

Pro

Con

cache

CPU

cache

CPU

Interconnect I/O

I/O

Performance
Tuning

149

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®NUMA
❑ Also called "Distributed

Memory"
❑ Memory Access time is

Non-Uniform
❑ Hence the name "NUMA"
❑ Interconnect is not "cc":

● Ethernet, ATM, Myrinet
●

❑ Runs 'N' copies of the OS
❑ Memory and I/O are

distributed resources

✔ Said to be cheap

✔ Said to be scalable

✔ Difficult to use and administer

✔ In-efficient use of resources

Pro

Con

I/O

cache

CPU

M

I/O

cache

CPU

M

I/O

cache

CPU

M

Interconnect

Performance
Tuning

150

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Cluster of SMP nodes

Second-level Interconnect

❑ Second-level interconnect is not cache coherent
● Ethernet, ATM, Myrinet,

❑ Hybrid Architecture with all Pros and Cons:
● UMA within one SMP node
● NUMA across nodes

SMP node SMP node

Performance
Tuning

151

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®cc-NUMA

❑ Two-level interconnect:
● UMA/SMP within one system
● NUMA between the systems

❑ Both interconnects support cache coherency i.e. the
system is fully cache coherent

❑ Has all the advantages ('look and feel') of an SMP
❑ Downside is the Non-Uniform Memory Access time

Interconnect

2-nd level

Performance
Tuning

152

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Template Parallel Architecture *

$

Memory

Board
P

Registers ↔ Cache

*) and simplified

Latency increases
Bandwidth decreases

$

P

Interconnect
Level 1Cache ↔ Local

Memory

$

Memory

Board
P

$

P

Interconnect
Level 1

Interconnect
Level 2

Local ↔ Remote
Memory

Performance
Tuning

153

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Programming Models Revisited
Architecture Shared Memory Distributed Memory

Efficient ? Efficient ?

UMA/SMP yes yes (very !)

NUMA no maybe*

Cluster of SMPs yes maybe*

cc-NUMA depends yes

*) Depends on interconnect

✔One can map any programming model onto any architecture

✔Making it efficient is the key problem to solve

Performance
Tuning

154

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Parallelizing an application
❑ The question whether an application is parallel, or not,

has nothing to do with the programming model
❑ Two possibilities (for the time consuming part):

➊If parallel, decide on the programming model:
☞ Message Passing

Do It Yourself
☞ Shared Memory

Use the compiler
May need directives to assist the compiler

➋If not parallel: Try to rewrite or change the algorithm
and go back to step ➊

Performance
Tuning

155

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

Shared Memory Parallelization

Performance
Tuning

156

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Shared Memory Programming
❑ With the Shared Memory Programming Model, one can

make good use of an auto-parallelizing compiler
❑ Success, or failure, to do so depends on:

● Application area
● Coding style
● Quality of the compiler

❑ One of the nice features of this programming model is
the ability to "mix and match"
☞ Get the compiler to do as much as possible
☞ Assist the compiler through pragmas where needed

❑ In this way, one can incrementally parallelize an
application

Performance
Tuning

157

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Decisions, decisions,
User directives or
pragma's found ?

Analyze loop for data
dependencies

Data dependency
found ?

Can the dependency
be broken ?

Generate serial
code

Generate parallel
code

Yes

No

Maybe No

Yes

YesNo

Performance
Tuning

158

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Auto-parallelization
❑ The compilers are loop oriented:

● Every (nested) loop will be analyzed for data
dependencies and parallelized if safe to do so

● Non-loop code fragments will not be analyzed !
❑ Note that one can have subtle interactions between

loop transformations and parallelization
❑ Remember that compilers have limited knowledge

about the application
❑ Check the parallelization messages with the -xloopinfo

option and the er_src command
❑ Use OpenMP directives/pragmas to override compiler

behaviour

Performance
Tuning

159

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Loop based parallelization
❑ Loop based parallelization:

● Different iterations of the loop are executed in parallel

❑ Same binary can be run on any number of processors
❑ The order in which the iterations are executed is:

● Undetermined
● Different from run to run

for (i=0; i < N; i++)
 A[i] = B[i] + C[i];

for (i=N/2; i < N; i++)
 A[i] = B[i] + C[i];

for (i=0; i < N/2; i++)
 A[i] = B[i] + C[i];

CPU 1

CPU 2

Performance
Tuning

160

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Options For Parallelization
-xautopar Automatic parallelization by the compiler

(requires -xO3 or higher; includes -xdepend)

-xreduction Also parallelize reductions
(recommended to use -fsimple=2 for reductions)

-xopenmp Parallelize an OpenMP application

-stackvar Allocate local data on stack
(Fortran only; In C local variables are always on the stack)

-xloopinfo Show parallelization messages on screen

Performance
Tuning

161

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Environment variables

☞ Not recommended to exceed the number of processors

☞ If the older variable PARALLEL is also set, the value should be
equal

☞ SUN Performance Library
✔ Checks for PARALLEL first. If not set, checks for

OMP_NUM_THREADS to be set

OMP_NUM_THREADS n Request n threads

☞ WARNING: The MT run-time library will not print warning
messages by default

☞ Set this environment variable to TRUE to activate the warnings

SUNW_MP_WARN TRUE | FALSE Control printing of warnings

Performance
Tuning

162

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The parallel Performance Library
❑ A Shared Memory Parallel version is available:

➊ Compiler and explicitly parallelized user code:
✔ Link with -xparallel, -xautopar (or -xexplicitpar)

Uses spin lock
Fast, but may waste idle processors

✔ May consider to set SUNW_MP_THR_IDLE
➋ Code with Posix/Solaris threads (not considered here):

✔ Link with -mt
Assumes system is shared among many tasks
Uses threads library for synchronization

❑ The number of threads is controlled through the
OMP_NUM_THREADS (or PARALLEL environment
variable)

Performance
Tuning

163

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Using The Compilers*

User Code Perf. Library Compile Link**

Serial Parallel -xautopar

Auto-Parallel Parallel -xautopar -xautopar

OpenMP Parallel -xopenmp -xautopar

Auto+OpenMP Parallel -xautopar and -xautopar
-xopenmp

Parallel Serial*** -xautopar -xautopar

*) It is assumed that you compile and link with -fast as well (for good serial
performance)

**) Linking with -xautopar or -xparallel is equivalent
***) By default you'll get the parallel version if you're in a serial region; use Sun

Perflib's routine "USE_THREADS" to override the number of threads

Performance
Tuning

164

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Example - Compile and Link

DO J = 1, N
 CALL DGEMM(.....)
END DO
CALL DGEMM

DGEMM serial

DGEMM parallel

-fast

-fast -xparallel

!$OMP PARALLEL ...
DO I = 1, N
 CALL DGEMM(.....)
END DO
(call use_threads(1))

CALL DGEMM

DGEMM serial

DGEMM serial
within loop, parallel
outside of loop

-fast

-fast -xopenmp

forces DGEMM to
run on 1 processor

Performance
Tuning

165

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Auto-Parallelization Example
 1 void mxv_row(int m,int n,double *a,double *b,double *c)
 2 {
 3 int i, j;
 4 double sum;
 5
 6 for (i=0; i<m; i++)
 7 {
 8 sum = 0.0;
 9 for (j=0; j<n; j++)
10 sum += b[i*n+j]*c[j];
11 a[i] = sum;
12 }
13 }% cc -c -fast -xrestrict -xautopar -xloopinfo mxv_row.c
"mxv_row.c", line 6: PARALLELIZED, and serial
 version generated
"mxv_row.c", line 9: not parallelized, unsafe
 dependence (sum)

Performance
Tuning

166

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Compiler - 1 CPU
Compiler - 2 CPUs
Compiler - 4 CPUs

The Performance

SunFire 6800
UltraSPARC-III Cu @ 900 MHz
8 MB L2-cache
S1SCC 7.0
Solaris 9

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

Serial version
executed

scales

Performance
Tuning

167

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

PerfLib - 1 CPU
PerfLib - 2 CPUs
PerfLib - 4 CPUs

The Sun Performance Library

SunFire 6800
UltraSPARC-III Cu @ 900 MHz
8 MB L2-cache
S1SCC 7.0
Solaris 9

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

Matrix too
small

scales

Performance
Tuning

168

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

http://www.openmp.org

Performance
Tuning

169

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®About OpenMP
❑ The OpenMP programming model is a de-facto

standard for Shared Memory Programming
❑ The approach chosen is based on the same informal

way in which the Message Passing Interface (MPI) de-
facto standard was defined

❑ OpenMP provides a compact, but powerful model
❑ Languages supported: Fortran and C/C++
❑ We will now present an overview of OpenMP
❑ Many details will be left out
❑ For specific information, we refer to the OpenMP

language reference manuals (http://www.openmp.org)

Performance
Tuning

170

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The Fork and Join model
The Fork and Join model

The Master

The Workers

Parallel region

Parallel region

Synchronization

"threads"

Performance
Tuning

171

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®A loop parallelized with OpenMP

!$omp parallel default(none) &
!$omp shared(n,x,y) private(i)
!$omp do
 do i = 1, n
 x(i) = x(i) + y(i)
 end do
!$omp end do
!$omp end parallel

#pragma omp parallel default(none) \
 shared(n,x,y) private(i)
{
 #pragma omp for
 for (i=0; i<n; i++)
 x[i] += y[i];
}

clauses

Performance
Tuning

172

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Components of OpenMP

 Parallel regions

 Work sharing

 Synchronization

 Data scope attributes

☞ private
☞ firstprivate
☞ lastprivate
☞ shared
☞ reduction

 Orphaning

Directives,
pragmas

Runtime
library

Environment
variables

The fork-join execution model is used

 Number of threads

 Scheduling type

 Dynamic thread
adjustment

 Nested parallelism

 Number of threads

 Thread ID

 Dynamic thread
adjustment

 Nested parallelism

 Timers

 API for locking

Performance
Tuning

173

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®A more elaborate example

do i = 1, n
 a(i) = b(i) + c(i)
end do

do i = 1, n
 z(i) = x(i) + y(i)
end do

scale = sum(a(1:n)) + sum(z(1:n))

This is a parallel loop

This is a parallel loop

Performance
Tuning

174

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Parallelized with OpenMP
!$omp parallel if (n > 10000) default(none) &
!$omp shared(n,a,b,c,x,y,z) private(f,i,scale)

!$omp end do nowait

!$omp barrier

!$omp end parallel

do i = 1, n
 a(i) = b(i) + c(i)
end do

do i = 1, n
 z(i) = x(i) + y(i)
end do

scale = sum(a(1:n)) + sum(z(1:n)) + f

!$omp do

!$omp do

!$omp end do nowait

parallel region

synchronization

parallel
loop

parallel
loop

Statement is executed
by all threads

f = 1.0 Statement is executed
by all threads

Performance
Tuning

175

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Another OpenMP example
 1 void mxv_row(int m,int n,double *a,double *b,double *c)
 2 {
 3 int i, j;
 4 double sum;
 5
 6 #pragma omp parallel for default(none) \
 7 private(i,j,sum) shared(m,n,a,b,c)
 8 for (i=0; i<m; i++)
 9 {
10 sum = 0.0;
11 for (j=0; j<n; j++)
12 sum += b[i*n+j]*c[j];
13 a[i] = sum;
14 }
15 }% cc -c -fast -xrestrict -xopenmp -xloopinfo mxv_row.c
"mxv_row.c", line 8: PARALLELIZED, user pragma used
"mxv_row.c", line 11: not parallelized

Performance
Tuning

176

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

0 1 10 100 1000 10000 100000 1000000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

OpenMP - 1 CPU
OpenMP - 2 CPUs
OpenMP - 4 CPUs

OpenMP Performance

SunFire 6800
UltraSPARC-III Cu @ 900 MHz
8 MB L2-cache
S1SCC 7.0
Solaris 9

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

Matrix too
small *

*) With the IF-clause in OpenMP this performance
degradation can be avoided

scales

Performance
Tuning

177

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Pointers To More Information
Developer Portal

http:/developer.sun.com

Compiler Collection Portal
http:/developer.sun.com/prodtech/cc

Introduction on the memory hierarchy:
http://www.sun.com/solutions/blueprints/1102/817-0742.pdf

How to compile on Sun:
http:
//developer.com/tools/cc/articles/US3Cu/US3Cu.content.html

More information on Solaris and 64-bit:
The "Solaris 7 64-bit Developer's Guide", part no 805-6250-10
(can be download from http://docs.sun.com)

Performance
Tuning

178

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

That's It !

Thanks !

Performance
Tuning

179

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

The SunFire Server
Architecture

Performance
Tuning

180

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®

USIII

L2
cache

USIII

L2
cache

USIII

L2
cache

Shared Memory Architecture

Shared Memory

I/O

✔ Easy to use and administer
✔ Efficient use of resources
✔ Scales as needs grow

Performance
Tuning

181

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Basic Building Block

CPU Data Switch
(5 ports)

USIII M
2.4 GB/s

USIII M

Fireplane
Data Port

4.8 GB/s

Control

Address &

Control

Address &

Note: Second memory and data
port not present on workstations

9.6 GB/s
(32B@300MHz)

L2

L2 9.6 GB/s
(32B@300MHz)

Fireplane Address
Router

Fireplane Address
Router

2.4 GB/s

2.4 GB/s 2.4 GB/s

Performance
Tuning

182

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The Simplified Big Picture

ad
dr

es
s

sw
itc

h

da
ta

sw
itc

hPCI

PCI

USIII $
USIII $
USIII $
USIII $

M
em

or
y

da
ta

sw
itc

h

ad
dr

es
s

sw
itc

h

USIII $
USIII $
USIII $
USIII $

M
em

or
y

da
ta

sw
itc

h

ad
dr

es
s

sw
itc

h
CPU/Memory boards

I/O assemblies

ad
dr

es
s

sw
itc

h

da
ta

sw
itc

hPCI

PCI

D
ata Sw

itch N
etw

ork

A
dd

re
ss

 S
w

itc
h

N
et

w
or

k ✔ The SMP model is
preserved throughout
product line

✔ Architectural details of the
switch networks depends
on Sun Fire model

✔ A hierarchical tree is used
to build the interconnect

✔ Smaller systems, have less
switch layers

✔ Largest system, the Sun
Fire 15K, can have up to 106
processors

Performance
Tuning

183

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®A Hierarchical Tree
Point-To-Point

(SunFire 15K only)

Performance
Tuning

184

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Interconnect Levels

System
Data

Switch

33 MHz card(s)

66 MHz card(s)
PCI

200
MB/s

400
MB/s

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

Address
Repeater

Datapath
Controller

Data
Switch

Address
Repeater

Datapath
Controller

Data
Switch

33 MHz card(s)

66 MHz card(s)
PCI

200
MB/s

400
MB/s

4.8 GB/s

4.8 GB/s

1.2 GB/s

1.2 GB/s

4.8 GB/s

150 M
snoops/sec

2.4 GB/s

150 M
snoops/sec

System
Address
Repeater

4.8 GB/s

2 cycles/
address

18x18
Address
Crossbar

18x18
Response
Crossbar

18x18
Data

Crossbar

1-2 cycles/
response

Level 1 Level 0Level 2Level 3

System
Data

Controller

Performance
Tuning

185

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Example - V880 WG Server

4.8 GB/s

U
p

to
 4

 C
PU

/M
em

or
y

B
oa

rd
s

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

Note: Control paths not shown here

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

Control
Switch

4.8 GB/s

4.8 GB/s

4.8 GB/s

PCI 66MHz/64 bit

PCI 66MHz/64 bit

PCI 33MHz/64 bit

PCI 33MHz/64 bit

Secondary
I/O bridge

Ebus

SCSI

10/100 Ethernet

USB

Serial I/O Front Panel

Gbit Ethernet FC-AL

PCI
Bridge

PCI
Bridge

I/O
 B

rid
ge

 C
on

ne
ct

or

MotherboardI/O Board

VH
D

M
 C

on
ne

ct
or

VH
D

M
 C

on
ne

ct
or

VH
D

M
 C

on
ne

ct
or

VH
D

M
 C

on
ne

ct
or

Address
Repeater

Data
Switch1.2 GB/s

1.2 GB/s

Performance
Tuning

186

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Example - SunFire 6800

System
Data

Switch

(19.2 GB/s
bisection

bandwidth)

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

Address
Repeater

Datapath
Controller

Data
Switch

Address
Repeater

Datapath
Controller

Data
Switch

4.8 GB/s

4.8 GB/s

1.2 GB/s

1.2 GB/s

4.8 GB/s

150 M
snoops/sec

2.4 GB/s

150 M
snoops/sec

System
Address
Repeater

(9.6 GB/s
peak)

System
Data

Controller

4 Fireplane
Switch Boards

Up to 6 CPU/Memory Boards

6 CPU/Memory
Ports

4 I/O
Ports

33 MHz card(s)

66 MHz card(s)
PCI

200
MB/s

400
MB/s

33 MHz card(s)

66 MHz card(s)
PCI

200
MB/s

400
MB/s

Up to 4 I/O Assemblies
6 CPU/Memory

Ports

4 I/O
Ports

Performance
Tuning

187

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®System Board Set

System
Data

Switch

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

L2USIII M

L2USIII M

CPU Data Switch
2.4 GB/s 2.4 GB/s

2.4 GB/s 2.4 GB/s

Address
Repeater

Datapath
Controller

Data
Switch

4.8 GB/s

4.8 GB/s
4.8 GB/s

150 M
snoops/sec

2.4 GB/s

150 M
snoops/sec

System
Address
Repeater

System
Data

Controller

Expander
board

 Slot 0 - CPUs, memory and switches

 Slot 1:
- PCI assembly or
- MaxCPU board

SSM address
transactions

(2 cycles/address)

SSM response
transactions

(1-2 cycles/transaction)

Data transfers

4.8 GB/s

System
 B

oard Set

Performance
Tuning

188

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Slot 1 Boards

Address
Repeater

Datapath
Controller

Data
Switch

1.2 GB/s

1.2 GB/s

33 MHz card(s)

66 MHz card(s)
PCI

200
MB/s

400
MB/s

33 MHz card(s)

66 MHz card(s)
PCI

200
MB/s

400
MB/s

 PCI Assembly

L2USIII

L2USIII

CPU Data Switch
2.4 GB/s

2.4 GB/s

Address
Repeater

Datapath
Controller

Data
Switch 2.4 GB/s

MaxCPU Board

150 M
snoops/sec

150 M
snoops/sec

2.4 GB/s

2.4 GB/s

Performance
Tuning

189

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®Three Centerplane Crossbars

18x18
Address
Crossbar

To expander board To expander board

18x18
Response
Crossbar

To expander board To expander board

To expander board To expander board

18x18
Data

Crossbar

Unidirectional paths
(2 cycles per address)

Unidirectional paths
(1-2 cycles per response)

Bidirectional paths
(2 cycles per 64+8 bytes)

Performance
Tuning

190

RvdP/V1.0 Application Performance Tuning - An Overview Copyright©2003 Sun Microsystems

take it to the nth

®The Big Picture - SF15K

18x18
Address
Crossbar

18x18
Response
Crossbar

18x18
Data

Crossbar

CenterplaneSystem Boards System Boards

