
W H I T E  P A P E R

The CLDC HotSpot™ 
Implementation Virtual Machine

JAVA™ 2  PLATFORM, MICRO EDITION ( J2ME™)





Sun Microsystems, Inc. 1

The CLDC HotSpot Implementation Virtual Machine 3

Java Technology in Small Devices 4

History of the Java Stack for Mobile Phones 5

CLDC 1.0/KVM 5

Mobile Information Device Profile (MIDP) 5

Wireless Deployments 5

The Hotspot™ Virtual Machine 6

Demand for Performance 6

Processor and Memory Requirements 7

Key Points 7

Other Small Consumer Devices 7

Value Proposition 8

CLDC HotSpot Implementation versus the KVM 8

Faster execution consumes less power 9

The increasing demands of 2.5G and 

next generation networks 9

CLDC HotSpot Implementation Design Challenges 10

CLDC HotSpot Implementation Architecture 11

Pure 32 bit virtual machine 11

Compact Object Layout 11

Unified Resource Management 11

The CLDC HotSpot Implementation 12

Garbage Collector

Accuracy 12

Generational Mark-Sweep-Compact Collector 12

Tracking Pointers Across Generations 13

Fast Allocation 13

Execution Engine 14

Fast Thread Synchronization 14

Conclusion 15

C O N T E N T S





The CLDC HotSpot™ Implementation Virtual Machine

The deployment of Java™-enabled wireless devices reached nearly 15 million units in

2001 and will likely exceed 100 million in 2002. (Source: Future Mobile Handsets, Arc

Group, May 2001.) This trend is expected to continue at a nearly exponential pace in

the next few years.

Connected Limited Device Configuration HotSpot™ Implementation (CLDC HotSpot™

Implementation) is Sun’s new high-performance Java virtual machine for embedded

devices. The first generation of Java™-enabled wireless devices are based on the KVM

(K virtual machine), and KVM deployments are continuing. CLDC HotSpot

Implementation promises to deliver nearly an order of magnitude better performance

than the KVM, while running in the small memory footprint required by devices such

as mobile phones.

The deployment of Java technology is well under way into mass-market consumer

devices such as mobile phones, wireless e-mail clients, and personal organizers. While

the market penetration of current generation mobile phones has not yet reached its

peak, the major manufacturers are already working hard on improved 2.5G and next

generation designs. Such phones have greater demands in performance and data

bandwidth due to features such as multimedia. The drive for better performance 

in embedded Java runtime environments has led Sun Microsystems to develop a new 

Java virtual machine technology that promises to deliver nearly an order of magnitude

better performance than the KVM-based devices that are currently being shipped.

The name for this new virtual machine technology is CLDC HotSpot  Implementation.

It borrows techniques from Sun Microsystems’ earlier revolution in virtual machine

performance, the Hotspot™ performance engine. In addition, it incorporates several

innovations in design that allow the virtual machine to run in resource-constrained

devices. In general, CLDC HotSpot  Implementation is intended to

• deliver cutting edge performance,

• deliver fast application startup time,

• requires minimal footprint,

• preserve battery life.

Version 1.0 of CLDC HotSpot Implementation now being offered by Sun Microsystems

is integrated with CLDC. This initial offering conforms to the CLDC Specification version

1.0 and Technology Compatibility Kit (TCK) 1.0. To complete the Java technology stack,

a compatible implementation of the MIDP 1.0 Specification is also offered.

Sun Microsystems, Inc. 3



Java Technology in Small Devices

A complete Java technology stack exists today to support embedded devices such as

mobile phones. The stack is based on the Java 2 Platform, Micro Edition (J2ME™), and

includes layers from the Java virtual machine to GUI support. These devices are

characterized as small, battery-powered devices with limited, wireless connection to

the Internet.

J2ME defines configurations and profiles, which, in combination with a Java virtual

machine, make up the Java technology stack. A configuration of J2ME includes a Java

virtual machine, as well as the Java programming language libraries that are required

as the lowest common denominator of a range of embedded devices. A profile is a layer

on top of the configuration that provides additional APIs for a specific class of devices.

A particular combination of configuration and profile is appropriate only for specific

Java virtual machines.

J2ME fits in with the other editions of Java, J2SE and J2EE, as illustrated in FIGURE 1.

Up to now, small, battery-powered devices are the domain of the KVM and the Mobile

Information Device Profile (MIDP), also shown.

CLDC HotSpot Implementation is now poised to take the place of the KVM as the

high-performance Java virtual machine for the next generation of embedded devices.

The CLDC HotSpot Implementation Virtual Machine4

Figure 1. J2ME, KVM and MIDP



History of the Java Stack for Mobile Phones

In 1998, the Spotless research initiative at Sun Microsystems Laboratories created a

compact version of the Java virtual machine to run on small, handheld, battery-

powered devices. For the first time, it was possible to write applications in the Java

programming language that could be run on such devices. Thus, a revolution was born

that, today, sees the deployment of tens of millions of Java technology-enabled small

devices such as mobile phones. (Sun Labs publication 1999-0169.) 

Spotless evolved to become the K Virtual Machine (KVM), a key component of Java 2

Micro Edition (J2ME). It also spawned the J2ME CLDC (Connected, Limited Device

Configuration), targeted at small mass-market consumer devices such as mobile

phones, wireless e-mail devices, and personal organizers.

CLDC 1.0/KVM

Working through the Java Community Process (JCP), the CLDC configuration was

created to provide core Java library support to provide a basic application framework

around the KVM. JSR-30 was approved in August 1999, and the final public release of

the CLDC Specification 1.0 occurred in May 2000. Practically every major manufacturer

of mobile phones, as well as PDA manufacturers and software vendors, participated in

the JCP expert group that developed CLDC 1.0.

Mobile Information Device Profile (MIDP)

In addition to a configuration, J2ME technology requires that a profile be defined to

provide a complete Java application framework for a particular market segment. See

Chapter 2 of J2ME Building Blocks for Mobile Devices, White Paper on KVM and the

Connected, Limited Device Configuration (CLDC), (Sun Microsystems, Inc., 2000). The

MID profile (Mobile Information Device Profile, MIDP) was created through the Java

Community Process to address the limited screen size and battery power of this class

of device. JSR-37 was approved in September 1999, and the final public release of the

MIDP Specification 1.0 occurred in September 2000.

Wireless Deployments

In 2001, major manufacturers of mobile phones, such as Motorola, Nokia, and Siemens,

and mobile operators such as NTT DoCoMo, J-Phone and Nextel, began shipping Java

technology enabled phones in high volume. It is estimated that the number of units in

the field based on J2ME will approach 15 million by the end of 2001, and should reach

108 million by the end of 2002. (Source: Future Mobile Handsets, Arc Group, May 2001.) 

Further projections of market penetration of Java technology-enabled phones are

420 million by 2003 and 680 million in 2004. These numbers reflect the adoption of

new Java technologies such as CLDC HotSpot Implementation.

Sun Microsystems, Inc. 5



The Hotspot™ Virtual Machine

At about the same time that the Spotless project began, a revolutionary Java virtual

machine technology called Hotspot was nearing product deployment. The Hotspot™

performance engine was developed to address the perception that Java virtual

machine performance was insufficient for many mainstream applications especially

on big servers. By implementing a host of performance enhancing techniques that

went beyond innovations like just-in-time (JIT) compilers, the performance of the Java

virtual machine increased by an order of magnitude. Hotspot technology was rolled

out in April 1999. (See the Java HotSpot Virtual Machine Technical White Paper, Sun

Microsystems, 2001.)

In 2001, these two technology trends converged to inspire the creation of the 

CLDC HotSpot Implementation virtual machine. The feat of creating Java technology-

enabled consumer devices with KVM and CLDC is impressive, but the perception is

forming in the marketplace that here, as in conventional Java technology, there will

ultimately be a need for faster performance. By applying optimization techniques

similar to those used in Hotspot, but using considerably less memory and consuming

less power, nearly an order of magnitude improvement can be realized in CLDC-based

devices.

Demand for Performance

The current generation of Java technology-enabled mobile phones have processor and

memory requirements that are typical of the original design parameters of the KVM

and CLDC. The typical processor is a 16 or 32-bit processor with a clock speed starting

from approximately 12-32 MHz, with a memory budget for the Java virtual machine

and libraries of about 512 kilobytes. Although the KVM easily met the footprint

requirements of this generation of target devices, the relatively slow processor and the

conventional implementation of a bytecode interpreter resulted in performance that

was adequate but not impressive. Sun Microsystems began to examine the possibility

of accelerating performance in the current generation of devices, while looking ahead

to the next generation mobile phone designs.

Before finalizing the features of CLDC HotSpot Implementation, the development

team surveyed key manufacturers to get an accurate picture of the capabilities of

current generation and next generation mobile phone designs.

The CLDC HotSpot Implementation Virtual Machine6



Processor and Memory Requirements

The following table summarizes processor and memory configurations for next

generation mobile phones. (Source: Sun Microsystems customer survey, 2001.)

Key Points

Our survey revealed that the following key points are important to manufacturers of

current generation and next generation mobile phones:

• Most of the available memory in a current generation or next generation handset is

needed for system software and media capabilities. Thus, the memory footprint of the

virtual machine and CLDC libraries must be minimized.

• Moore’s Law does not apply to battery life: so far, no exponential expansion of

battery capacity with the passage of years has been observed. Every effort must be

made to minimize battery consumption for the foreseeable future.

• The key to executing Java programs at high speeds without draining the battery is

keeping the working set of the Java virtual machine inside the on-processor cache.

• Tunability is key: Implementers must be able to use different size parameters and

policies per device.

Other Small Consumer Devices

Besides mobile phones, the CLDC HotSpot Implementation development team also

considered the processor and memory requirements of other devices that potentially

belong in the CLDC and MIDP category, such as wireless personal organizers (PDAs) and

communicators.

Communicator type devices typically have much more memory available than inex-

pensive mass market handsets, but they are also manufactured in much smaller

volume. Although footprint constraints are much less stringent in this class of device,

the next generation of Java virtual machine technology for embedded devices must be

appropriate for smaller, high-volume handsets as well.

Sun Microsystems, Inc. 7

TABLE 1. Next generation mobile phone capabilities

CPU type mostly ARM

CPU speed 30-400 MHz

On board RAM 128-384 kB

RAM 1-4 MB

ROM / Flash 8-24 MB

RAM for Java stack mostly under 1 MB



Value Proposition

There was a perception early in the history of the Java programming language that 

the performance of the applications written in the Java programming language 

was inadequate. With the advent of the Hotspot performance engine, the competitive

landscape was revolutionized for Java virtual machines on servers and on the desktop.

In much the same way, CLDC HotSpot Implementation will revolutionize the deploy-

ment of Java technology in battery-powered, handheld devices. The performance of

the CLDC HotSpot Implementation virtual machine approaches that of Java virtual

machines running on desktop systems. It does so using techniques such as:

• Dynamic compilation

• Generational garbage collection

• Fast synchronization

• Unified resource management

To apply these techniques in the context of handheld devices, some very clever 

innovations were necessary. (Refer to “CLDC HotSpot Implementation Architecture”

on page 10.) 

CLDC HotSpot Implementation is a clean 32 bit virtual machine that complies with

the CLDC Specification, version 1.0. Except for the areas documented in Chapter 4 

of the CLDC Specification, CLDC HotSpot Implementation is fully compliant with 

the Java™ Virtual Machine Specification and the Java™ Language Specification.

CLDC HotSpot Implementation places no restrictions on the number of loaded classes

or the size of the object heap.

Despite its high performance, CLDC HotSpot Implementation is compact enough to

meet the footprint constraints of next generation and many current generation

mobilephones. The total memory requirement for the virtual machine and software 

is less than 1 Mb. This includes the CLDC HotSpot Implementation virtual machine,

the CLDC class libraries, the MIDP class libraries, and Java applications.

The manufacturers who have successfully developed and deployed Java technology-

enabled handsets might feel little competitive pressure to change their offerings.

However, there is a substantial value to upgrading their offerings to incorporate 

CLDC HotSpot Implementation technology.

CLDC HotSpot Implementation versus the KVM

In the KVM design, a heavy emphasis was placed on portability and platform-inde-

pendence of the virtual machine. Consequently, the KVM is a conventional virtual

machine that executes Java applications exclusively by means of a bytecode inter-

preter written in ANSI C. However, measurements reveal that, on average, interpreted

virtual machine performance is approximately one order of magnitude slower than

compiled virtual machine performance.

The CLDC HotSpot Implementation Virtual Machine8



To improve the performance of a virtual machine beyond pure interpreter performance,

some kind of a static or dynamic compilation strategy is needed. Static compilation of

Java applications is an undesirable solution in the wireless space, where it is important

for third parties to quickly develop applications and deploy them widely, and to take

advantage of Over-The-Air (OTA) provisioning to distribute bytecode streams to handsets

in the field.

Additional performance enhancement compared to straightforward virtual machines

is achieved with a HotSpot-style garbage collector and a fast synchronization mechanism.

Faster execution consumes less power

The dramatic improvement in performance of CLDC HotSpot Implementation

“turbocharges” application startup time and execution time, resulting in a positive

subjective experience. Just as importantly, it consumes battery power at a proportionally

lower rate.

The increasing demands of 2.5G and next generation networks

With the emergence of 2.5G and next generation networks, the performance demands

are dramatically increasing for on-phone applications and data communications.

Next generation mobile networks will support data bandwidth rates from 384Kbits

per second to 2 Mbits per second, opening up new possibilities for applications in the

areas of:

• Games and gambling applications

• Multimedia applications

• Location based services

• E-commerce applications

• System software

• Banking applications

Sun Microsystems, Inc. 9

Interpreted virtual machines
(range of performance)

1 - 4x 10 - 20x 

Virtual machines w/ a compiler
(range of performance)

FIGURE 2. Performance of interpreted and JIT virtual machines



The virtual machine must provide sufficient performance for these new types of

applications while minimizing battery drain. Paradoxically, battery power can be

optimized even though a faster processor consumes battery power at a proportionally

faster rate. A very fast virtual machine such as CLDC HotSpot Implementation makes

possible an overall savings in power even while servicing this new generation of 

software, because it finishes all tasks much sooner than a slower virtual machine.

CLDC HotSpot Implementation Design Challenges

A set of fundamental challenges had to be addressed in the CLDC HotSpot

Implementation design:

• The trade-off of fast execution versus small footprint

• Good cache behavior

• Enhancing battery efficiency

• The need for tunable parameters

Speed Versus Footprint. There is a seeming trade-off between speed of execution

and memory (footprint) requirements. How can one build a fast dynamic compiler

without blowing the memory budget? To simply port the Hotspot technology would

result in a memory footprint far too large for mass market, battery-powered devices.

Good Cache Behavior. The importance of cache behavior might not be obvious at

first. Abundant memory adds to manufacturing cost, although Moore’s law tempts

designers to waste memory. But additional memory—especially RAM—also puts a

great load on battery capacity. It was a prime design objective of CLDC HotSpot

Implementation to obtain good cache behavior so that the working set for Java stack

could fit within the on-processor or in the secondary (on-board) cache. In this way,

substantial battery conservation is achieved by avoiding reads and writes to the main

memory array.

The design objective of good cache behavior implied a number of software strategies:

• Designing the virtual machine with mostly small objects

• Use of a generational garbage collector, which often touches memory only locally

• Keeping compiled code in the object heap, where it is fully relocatable or flushable

Enhancing Battery Efficiency. It bears repeating that the leap in execution speed

provided by CLDC HotSpot Implementation directly enhances battery life. Quite simply,

faster execution consumes less power.

The need for tunable parameters. A high level design must also be tempered by a

consideration of real devices.

• Cache behavior varies greatly between devices

• CLDC HotSpot Implementation’s flexible design allows device-specific tuning

The CLDC HotSpot Implementation Virtual Machine10



CLDC HotSpot Implementation Architecture

The architecture of the CLDC HotSpot Implementation virtual machine includes the

following features:

• Pure 32 bit virtual machine

• Compact object layout

• Unified resource management

• Accurate generational garbage collection

• Optimized interpreter

• Adaptive compilation, which only compiles the most used methods

• Fast synchronization

• No restriction on number of loaded classes

Pure 32 bit virtual machine

CLDC HotSpot Implementation is a pure 32 bit virtual machine. This provides a large

address space and scalable architecture well-suited for mid- to high-end mobile phones.

It is especially suited for the emerging 2.5G and next generation mobile phones, which

typically have larger memory capacity.

Compact Object Layout

CLDC HotSpot Implementation supports a compact object layout to reduce general

memory consumption. A Java object has two parts. The first part is the object header,

which provides reflective information and contains hash code and locking status. The

second part is the object body, containing the object fields.

Most other virtual machines use at least two words for the object header. However,

since the average object size is small, object headers take up a big fraction of the total

object space.

CLDC HotSpot Implementation introduces a new design, in which only one word is

needed for the object header. In addition to reducing memory usage, object allocation

becomes faster.

Unified Resource Management

A major benefit of CLDC HotSpot Implementation is unified resource management.

This means that all allocated data resides inside the object heap. Allocated data includes:

• Java level objects,

• Reflective objects, such as methods and classes,

• Compiler generated code, and

• Virtual machine internal data structures.

An important advantage of this unification is that the same garbage collector takes

care of cleaning up all allocated resources, even compiled code. Almost all other

virtual machines have designated areas for user objects, reflective data, temporary

Sun Microsystems, Inc. 11



data and generated code. Such a scheme results in memory fragmentation, multiple

cleanup strategies and other complexities. CLDC HotSpot Implementation solves these

issues by using the mark-sweep-compact garbage collector for everything.

Another benefit of unified resource management is that compiled code can be

removed dynamically to free up space for user-level objects.

The CLDC HotSpot Implementation Garbage Collector

A garbage collector automatically reclaims unused object memory and makes the

freed memory available for new allocations. CLDC HotSpot Implementation uses an 

accurate generational mark-sweep-compact garbage collector, which results in:

• Fast object allocation

• Small garbage collection pauses

• No memory fragmentation

Accuracy

An accurate garbage collector knows where all pointers are when garbage collection

takes place. This has two major benefits. First, all inaccessible object memory can be

reclaimed reliably. Second, all objects can be relocated, allowing object memory

compaction and eliminating fragmentation. Using a conservative garbage collection

approach would be highly undesirable on a memory-constrained system, since it

causes object fragmentation and unpredictable memory leaks.

Generational Mark-Sweep-Compact Collector

The CLDC HotSpot Implementation virtual machine employs a two generational

garbage collector, as illustrated in FIGURE 3.

The CLDC HotSpot Implementation Virtual Machine12

Object Heap

Old Generation New Generation

FIGURE 3. Two-generational Garbage Collection



The object heap is segmented into old generation, new generation and as-yet-unused

portions of memory. The old generation segment contains objects that were previously

garbage collected and compacted. New objects are allocated in the new generation

segment, which is generally much smaller. When the new generation segment is full,

the garbage collector runs briefly and reclaims the unused memory for that genera-

tion. When all memory in the object heap is consumed, the garbage collector runs

across the entire heap and compacts objects into a “new” old generation. Only during

this large garbage collection is there a noticeable pause, but it occurs infrequently.

This scheme takes advantage of the fact that the vast majority of objects are short-

lived. Since most objects are short-lived, only a small portion of allocated objects are

promoted to the old generation. Most garbage collection operations focus only on the

new generation, resulting in only small pauses.

Tracking Pointers Across Generations

One requirement of a generational system is the ability to track pointers from 

old generation to new generation. For this, CLDC HotSpot Implementation uses a 

write barrier.

Whenever a pointer store takes place, the field is marked as a possible future pointer

from old to new generation.

Fast Allocation

A side benefit of a compacting garbage collecting is that new objects are allocated

contiguously in stack-like fashion in the first generation. Object allocation is then

simply a matter of increasing a pointer.

Sun Microsystems, Inc. 13



Execution Engine

In general, Java virtual machines with a compiler are an order of magnitude faster

than those with only an interpreter. For that reason, CLDC HotSpot Implementation

includes a dynamic compiler to provide fast bytecode execution. A well-known

problem with compiling bytecodes into native instructions is that the generated code

takes up four to eight times as much space as the original bytecodes. Adaptive compi-

lation alleviates this problem by only compiling methods that are recognized as

“hotspots”, i.e., the most frequently used parts of the application. The CLDC HotSpot

Implementation dynamic compiler finds the hotspot by running a statistical profiler.

To minimize the amount of compiled code, the CLDC HotSpot Implementation

virtual machine includes an optimized interpreter used for infrequently executed

methods.

The CLDC HotSpot Implementation compiler is a simple one-pass compiler that

utilizes the following basic optimizations: constant folding, constant propagation,

loop peeling.

The components of the CLDC HotSpot Implementation virtual machine are shown

in FIGURE 4.

Fast Thread Synchronization

The Java programming language provides language-level thread synchronization,

which makes it easy to express multi threaded programs with fine-grained locking.

CLDC HotSpot Implementation uses a variant of the block structured locking mecha-

nism developed for the HotSpot virtual machine. As a result, synchronization perfor-

mance becomes so fast that it is no longer a performance bottleneck for Java programs.

The CLDC HotSpot Implementation Virtual Machine14

FIGURE 4. CLDC HotSpot Implementation Architecture



Conclusion

To keep pace with the demands for performance of the next generation of mobile

phones and other wireless devices, Sun Microsystems saw the need for a new Java

virtual machine technology. The result is CLDC HotSpot Implementation, which

achieves a performance gain of nearly an order of magnitude compared to the first

generation of J2ME deployments. The CLDC HotSpot Implementation virtual machine

was demonstrated on real devices at Java One 2002. This technology is available to

device manufacturers under license from Sun Microsystems.

Sun Microsystems, Inc. 15



The CLDC HotSpot Implementation Virtual Machine16

NOTES



Copyright © 2001-2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and

without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and other countries.

This product is distributed under licenses restricting its use, copying distribution, and decompilation. No part of this

product may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, J2ME, HotSpot, Java and the Java Coffee Cup logo are trademarks or registered trade-

marks of Sun Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2001-2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier,

et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à

http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les

Etats - Unis et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie,

la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme,

par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright

et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, J2ME, HotSpot, Java et le logo Java Coffee Cup sont des marques de fabrique ou des

marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. L’interface d’utilisation graphique OPEN

LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de

pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour

l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,

cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et

qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y

COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE

UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE

GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Sun Microsystems, Inc. 17



AFRICA (NORTH, WEST AND CENTRAL): +9714-3366333 • ARGENTINA: +5411-4317-5600 • AUSTRALIA: +61-2-9844-5000 • AUSTRIA: +43-1-60563-0 • BELGIUM: +32-2-704-8000 • BRAZIL: +55-11-5187-2100 • CANADA: +905-477-6745 • CHILE: +56-2-3724500
COLOMBIA: +571-629-2323 • COMMONWEALTH OF INDEPENDENT STATES: +7-502-935-8411 • CZECH REPUBLIC: +420-2-3300-9311 • DENMARK: +45 4556 5000 • EGYPT +202-570-9442 • ESTONIA: +372-6-308-900 • FINLAND: +358-9-525-561 • FRANCE: +33-01-30-67-50-00
GERMANY: +49-89-46008-0 • GREECE: +30-1-618-8111 • HUNGARY: +36-1-202-4415 • ICELAND: +354-563-3010 • INDIA: +91-80-5599595 • IRELAND: +353-1-8055-666 • ISRAEL: +972-9-9710500 • ITALY: +39-039-60551 • JAPAN: +81-3-5717-5000
KAZAKHSTAN: +7-3272-466774 • KOREA: +822-2193-5114 • LATVIA: +371-750-3700 • LITHUANIA: +370-729-8468 • LUXEMBOURG: +352-49 11 33 1 • MALAYSIA: +603-264-9988 • MEXICO: +52-5-258-6100 • THE NETHERLANDS: +00-31-33-45-15-000
NEW ZEALAND: +64-4-499-2344 • NORWAY: +47 23 36 96 00 • PEOPLE’S REPUBLIC OF CHINA: • BEIJING: +86-10-6803-5588 • CHENGDU: +86-28-619-9333 • GUANGZHOU: +86-20-8755-5900 • SHANGHAI: +86-21-6466-1228 • HONG KONG: +852-2202-6688
POLAND: +48-22-8747800 • PORTUGAL: +351-21-4134000 • RUSSIA: +7-502-935-8411 • SINGAPORE: +65-438-1888 • SLOVAK REPUBLIC: +421-7-4342 94 85 • SOUTH AFRICA: +2711-805-4305 • SPAIN: +34-91-596-9900 • SWEDEN: +46-8-631-10-00
SWITZERLAND: • GERMAN: 41-1-908-90-00 • FRENCH: 41-22-999-0444 • TAIWAN: +886-2-2514-0567 • THAILAND: +662-636-1555 • TURKEY: +90-212-335-22-00 • UNITED ARAB EMIRATES: +9714-3366333 • UNITED KINGDOM: +44-1-276-20444
UNITED STATES: +1-800-555-9SUN OR +1-650-960-1300 • VENEZUELA: +58-2-905-3800 

© 2002 Sun Microsystems, Inc., All rights reserved. Sun, Sun Microsystems, The Sun logo, Java, Embedded Java, Sun Cobalt RcQ, iForce, the Java logo, SunTone, and JavaEmbedded Server are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is a registered trademark in the United States and other countries exclusively licensed through X/Open Company, Ltd., eGasStation
is a trademark of Cyberonix, Inc. Information subject to change without notice. 06/02

H E A D Q U A R T E R S SUN MICROSYSTEMS, INC., 901 SAN ANTONIO ROAD, PALO ALTO, CA 94303 -4900 USA
PHONE: 650 960 -1300 FAX: 650 969- 9131 INTERNET: www.sun.com

S A L E S  O F F I C E S

W H I T E  P A P E R


