
GC, University of Tokyo, Sep 22, 2003 1/92

Garbage Collection:
Overview, Techniques, Successes

Tony Printezis
ton y.printezis@sun.com

Sun Micr osystems Laboratories
MS BUR02-311
1 Network Drive

Burlington, MA 01803
USA



GC, University of Tokyo, Sep 22, 2003 2/92

Who Am I?

■ Tony Printezis
● Member Of Technical Staff, JTech Group,
● Sun Microsystems Laboratories, East, MA

■ Previously
● Faculty Member, Dept of Computing Science,
● University of Glasgow, Scotland

■ Working on GC for 5 years
● wrote first version of mostly-concurrent GC
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Overview

■ Introduction / GC Benefits
■ Simple GC Techniques
■ Incremental GC Techniques
■ Generational GC Techniques
■ GC in the Java HotSpot Virtual Machine
■ GC Issues in the Real World
■ Conclusions
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Garbage Collection

■ Traditional Explicit De-Allocation (C/C++)
● Programmer allocates memory (new/malloc)
● Programmer also has to de-allocate it

(delete/free)
■ Automatic Memory Management (aka GC)

● Programmer allocates memory (new)
● GC reclaims all unused memory
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GC Brief Histor y

■ GC has existed since the 1960s!
● LISP

■ Functional / O-O / Logic languages
● ML, Haskell, SmallTalk, etc.

■ Conservative GCs
● C and C++

■ Mainstream (finally!) in the late 1990s
● the Java programming language, then C#
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GC Benefits

✔ No dangling references
● (wrongly de-allocated memory)

✔ No memor y leaks
● (unused, not de-allocated memory)

✔ Greater programmer productivity
● no need to de-allocate memory
● simplified team work
● simplified APIs
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The Java Langua ge Benefits GC Too

■ “Chicken and Egg” problem
● no good GC no applications use it
● no applications to test no improved GC

■ The Java language is great for GC research
● large amounts of industrial-strength code
● several industrial-strength JVMs
● industry-standard benchmarks
● academia / industry both interested
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Programmer s and GC

Three categories of programmers:

✔ Learned to program using garbage collection;
really hate explicit de-allocation

✔ Learned to program using explicit de-allocation;
migrated smoothly to garbage collection (me!)

✘ Learned to program using explicit de-allocation;
really hate garbage collection
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Memor y Costs and GC

■ Why do we need GC anyway?
● memory these days is really cheap ( $200/GB)
● 64-bit address space is really huge
● can’t we keep adding more memory?

■ One “real-world” application allocates
● 20MB/sec, 1.2GB/min, 70.3GB/hour
● translates to $14,000/hour (quite expensive!)
● but, it would still take 27,000 years to fill up

the 64-bit address space though!
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Overview

■ Introduction / GC Benefits

➜ Simple GC Techniques
■ Incremental GC Techniques
■ Generational GC Techniques
■ GC in the Java HotSpot Virtual Machine
■ GC Issues in the Real World
■ Conclusions
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Simple GC Techniques

■ General Concepts
■ Indirect Techniques

● Mark-Sweep
● Mark-Compact
● Copying

■ Direct Techniques
● Reference Counting
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Object

“A container, with a well-defined structure, of one or
more fields, some of which can contain references.”

■ not only full-fledged objects, with encapsulation
and inheritance in the context of object-oriented
programming,

● e.g. instances in the Java language, C++
■ but also any kind of structured data records.

● e.g. structs in C
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Reachability

■ Roots
● memory locations that are live by default
● e.g. runtime stack locations, static fields
● Root Objects

● objects directly reachable from the roots
■ Live Objects

● all objects transitively reachable from the roots
■ Garbage Objects

● all other objects
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Reachability Example

Stack
Runtime Heap

ref

ref
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GC Phases

■ A GC has two main phases
● Identification of garbage objects
● Reclamation of garbage objects

■ They are either distinct. . .
● Mark-Sweep, Mark-Compact

■ . . . or interleaved
● Copying, Reference Counting
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Fundamental GC Proper ty

“When an object becomes garbage, it stays garbage.”
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Exact (or Accurate) GC

■ Can tell which memory locations contain obj refs
● on stacks, objects, classes (statics)

■ Allows object relocation
● will have to update all refs to it

■ Accurate liveness information
● exactly all live objs marked

■ Very flexible, but not free!
■ Most JVMs have exact GCs (e.g. HotSpot JVM)



GC, University of Tokyo, Sep 22, 2003 18/92

Conser vative GC

■ Can’t tell which memory locations contain obj refs
■ Assume that what looks like an obj ref is an obj ref

● can’t always relocate objects
● object liveness information is conservative

■ Easier to implement than exact
■ GCs for C/C++
■ Some JVMs have semi-conservative GCs
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Conser vative GC Example
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Mark-Sweep

■ Identify all live objects
● marking phase

■ Sweep over heap
● de-allocate all garbage objects in-place

■ Allocation
● keep track of where free space is

● e.g. free lists, bitmaps
● reuse free space to satisfy allocation requests
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Mark-Sweep Example

Root

1. End Of Marking

Root

0. Mark−Sweep Start

2. End Of Sweeping

Root
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Mark-Compact

■ Identify all live objects
● same as Mark-Sweep

■ Sweep over heap
● slide all live objects towards start of the heap
● create single free chunk at the end of the heap
● need to patch references as objects move

■ Allocation
● fast “bump a pointer and check”
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Mark-Compact Example

1. End Of Marking

0. Mark−Compact Start

2. End Of Compaction

Root

Root

Root
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Mark-Sweep vs. Mark-Compact

■ Performance
● compaction adds 2–2.5 overhead

■ Complexity
● Mark-Sweep: well-tuned free lists
● Mark-Compact: compaction

■ Fragmentation
● Mark-Sweep suffers from it
● Mark-Compact eliminates it
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Copying GC

■ Heap split into two equal-sized areas
● from-space and to-space

■ Mutator allocates/modifies objects in from-space
■ GC visits transitive closure of live objects. . .

● . . . and copies them to to-space
● objects contiguously allocated in to-space
● identification / copying interleaved

■ Spaces swap rôles after GC
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Copying GC Example
0. Copying Start
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Copying GC Performance

✔ Copying GC is very fast. . .
● . . . provided the percentage of live objects is low
● it only visits live objects

✔ Compaction
● no fragmentation and fast allocation

✘ Doubles space requirements though
● only from-space used to store live objects
● impractical for very large heaps
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Reference Counting

■ Keep a reference count field per object
● increase ref count

● when reference to that object created
● decrease ref count

● when reference to that object dropped
■ De-allocate objects with zero ref count

● also scan them and decrease ref counts
■ Need to track all reference updates
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Reference Counting Example
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Reference Counting Performance

✘ Incomplete
● garbage cycles

✘ Incremental, but not always!
● last reference to the root of large data structure

✘ Multi-threaded issues
● safe ref count maintenance

✘ Extra space requirements

✔ Does not need to visit all objects!
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Advanced Reference Counting

■ Background cyclic GC
■ 2-bit ref counts

● if ref count is 3, assume object live
● don’t decrease it after that

● when object garbage, cyclic GC will find it
■ Per-thread ref count update buffers

● process them when convenient
● schedule de-allocations when convenient
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Overview

■ Introduction / GC Benefits
■ Simple GC Techniques

➜ Incremental GC Techniques
■ Generational GC Techniques
■ GC in the Java HotSpot Virtual Machine
■ GC Issues in the Real World
■ Conclusions



GC, University of Tokyo, Sep 22, 2003 33/92

Incremental GC Techniques

■ Tricolor Marking
■ Boehm’s Mostly-Concurrent GC
■ Baker’s Copying GC
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Stop-The-W orld GC

■ Mutator (application) threads stopped during GC
● object graph frozen
● consistent liveness information

■ Heap inconsistent during object moves
● move objects safely when mutator stopped
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Serial App / Serial GC

Application GC Pause

Time
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Tricolor Marking

■ Invariant during liveness identification
■ An object can have one of three colors

● White: not marked
● Gray: marked, its children not yet marked
● Black: marked, all its children marked



GC, University of Tokyo, Sep 22, 2003 37/92

Tricolor Marking

■ Start with all objects white
■ Mark roots grey
■ While there are gray objects

● pick a gray object
● mark its children gray, then mark it black

■ When done, all white objects are garbage
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Tricolor Marking Example

Stack
Runtime Heap
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Tricolor Marking Example
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Tricolor Marking Example
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Tricolor Marking Example

Stack
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Incremental GC

■ Perform GC while the mutator is running
■ Liveness identification is more challenging

● mutator is changing the object graph
● GC might not visit some live objects
● need to synchronise GC with mutator

■ The scenario we need to avoid
● a black object pointing to a white object
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Tricolor Invariant Violation

!
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Mutator/GC Sync hronisation

■ To prevent the violation we can either:
■ Track writes to black objects

● with a write barrier
● executed upon all reference field updates

● mark them gray
■ Track reads from white objects

● with a read barrier
● executed upon all reference field reads

● mark them gray
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Write Barrier

WRITE
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Read Barrier

READ
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Boehm’ s Mostl y-Concurrent GC

■ Single-space Incremental Mark-Sweep GC
■ GC operation

● first stop-the-world and “checkpoint” roots
● incrementally, mark live objects from roots

● keep track of modified reference fields
● write barrier (modified black objects gray)

● stop-the-world again and remark
● mark from modified reference fields

● incrementally, de-allocate garbage objects



GC, University of Tokyo, Sep 22, 2003 45/92

Mostl y-Concurrent GC Example

Root

0. Start of GC Cycle
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Mostl y-Concurrent GC Example

Root

1. Stop−The−World Root Checkpointing
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Mostl y-Concurrent GC Example

Root

2. Start of Incremental Marking Phase
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Mostl y-Concurrent GC Example

WRITE

Root

3. Mutator Writes
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Mostl y-Concurrent GC Example

Root

4. End of Incremental Marking Phase
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Mostl y-Concurrent GC Example

Root

5. Stop−The−World Remark
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Mostl y-Concurrent GC Example

Root

6. Incremental Sweeping Phase
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Baker’ s Incremental Copying GC

■ Two-space Incremental Copying GC
■ Mutator only accesses objects in to-space
■ GC operation

● background GC copies objects to to-space
● when mutator is about to access an object in

from-space
● the object is first copied to to-space
● read barrier (read white objects gray)

● when all objects copied, swap spaces
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Incremental Copying GC Example
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Incremental Copying GC Example
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Incremental Copying GC Example
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Incremental Copying GC Example

Root

WRITE

T
o

F
ro

m

3. Mutator Writes



GC, University of Tokyo, Sep 22, 2003 47/92

Incremental Copying GC Example
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Incremental GC Summar y

■ Pause Times
● shorter than stop-the-world, usually!

■ Memory Requirements
● greater
● floating garbage

■ Total GC Time
● 2 or more

■ Complex, hard to debug
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Overview

■ Introduction / GC Benefits
■ Simple GC Techniques
■ Incremental GC Techniques

➜ Generational GC Techniques
■ GC in the Java HotSpot Virtual Machine
■ GC Issues in the Real World
■ Conclusions
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Two Interesting Obser vations

■ Weak Generational Hypothesis
● “Most objects will die young.”
● “Few refs in old objects point to young objects.”
● e.g. ML, SmallTalk, mostly true for Java

programs
■ Can take advantage of this

● the GC mostly concentrates on young objects
● get more bang for your buck
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Generational GC

■ Heap split into separate physical areas
● generations
● objects grouped according to age
● N youngest generations GCed independently

■ Need to track references
● from older to younger generations
● these are assumed to be infrequent!
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Two-Generation GC

■ Typically
● two generations
● young generation smaller than old generation

■ Minor Collection
● young generation collection, fast, frequent

■ Major Collection
● old generation collection, slow, infrequent
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Generational GC — Promotion

Allocation

Old Generation

Young Generation

Promotion
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Reference Tracking

■ Write Barrier
● filtering / non-filtering

● keeps track of all updated fields, or
● only the ones that have old-to-young refs

■ Most widely-used data structures
● Card Table
● Remembered Set
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Card Table

■ Heap split into small regions (cards)
● an array (card table) has one word per card
● cards: 0.5K–2K, clean / dirty
● upon a reference field update

● write barrier sets card to dirty
● write barrier: 2–3 native instructions

■ Need to scan all fields in all dirty cards
■ Works well in multi-threaded environments
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Card Table Example

Young Generation

Old Generation

Card Table
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Remembered Set

■ Maintain a list of updated locations
● upon a reference field update

● write barrier adds field location to a buffer
● can filter unwanted entries, if needed

■ More accurate then card table
● heavier-weight write barrier
● multi-threaded issues

● per-thread buffers
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Remembered Set Example

Young Generation

Old Generation

Remembered Set
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Generational GC Summar y

■ Can combine different GC techniques
■ Typical configuration

● Copying GC in young generation
● Mark-Compact GC in old generation, or
● an Incremental GC in old generation
● best of both worlds!

■ More code / memory and write barrier impact . . .
■ . . . but collection more effective, in most cases!
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Overview

■ Introduction / GC Benefits
■ Simple GC Techniques
■ Incremental GC Techniques
■ Generational GC Techniques

➜ GC in the Java HotSpot Virtual Machine
■ GC Issues in the Real World
■ Conclusions
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GC in the HotSpot JVM

■ Exact
■ Generational with Card Table
■ Very, very, very fast allocation
■ Stop-The-World and Mostly-Concurrent GCs
■ Serial and Parallel GCs
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Generations in the HotSpot JVM

Old Generation

Young Generation

Unused

Survivor Spaces
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ToFrom
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Before Minor GC

Old Generation

Young Generation

Unused

Eden

Survivor SpacesFrom To
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After Minor GC

Old Generation

Young Generation

Unused

Empty

FromTo

Eden

Survivor Spaces
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Fast Allocation

■ Eden always empty after minor GC
● can allocate very fast into it (bump-a-pointer)
● allocation code inlined by the JIT
● new Object() is about 10 native instructions

■ Multi-threaded allocation
● thread-local allocation buffers in eden
● no locking for most allocations!

■ Fast allocation is enabled by GC!
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DEMO

Default GC
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Java Applications

Server

Workstation
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Parallel App / Serial GC

Application

Idle!
Idle!
Idle!
Idle!
Idle!

GC Pause

Time
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Parallel GC

■ Parallel GC for young generation
● take advantage of multiple CPUs
● improves throughput and pause times
● load balancing
● allows for a larger young generation

■ Old generation still done serially
■ Customer quote

“The best JVM enhancement I’ve seen in years!”
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Parallel App / Parallel GC

Application

Pause Pause

GC

Time
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DEMO

Parallel GC
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Pause-Time Issues

✔ Most GC pauses are short
● minor collections
● parallel young generation

✘ Few GC pauses can be long
● major collections
● serial
● mainly depend on heap size

✘ Some applications cannot tolerate long pauses
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Mostl y-Concurrent GC

■ Mostly-Concurrent GC for old generation
● aka Concurrent Mark-Sweep or CMS
● bulk of GC work concurrent (short pauses)
● no compaction

● in-place de-allocation
● slower promotion, fragmentation

■ Parallel young GC by default, if CPUs available
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Parallel App / CMS

ApplicationGC

Initial RemarkConc.Mark Conc.Sweep

Time
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DEMO

Mostl y-Concurrent GC
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CMS Achievements

■ CMS achieves
● low GC pause times

● 200ms–250ms possible
● on several GB heaps
● in combination with Parallel Young GC

■ It has been successfully deployed
● server-style telecommunications applications

■ Works best for 1 CPU, large heaps
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Overview

■ Introduction / GC Benefits
■ Simple GC Techniques
■ Incremental GC Techniques
■ Generational GC Techniques
■ GC in the Java HotSpot Virtual Machine

➜ GC Issues in the Real World
■ Conclusions
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Finalization

■ Cleanup hook for external resources
● file descriptors
● native GUI state

■ Usage:
● override protected void finalize()
● at some unspecified time after object has

become unreachable
● finalize() might be invoked
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How Does It Work?

1. An instance is registered when allocated,

2. is enqueued when it becomes unreachable,

3. has its finalize() method invoked,

4. becomes unreachable again,

5. then, finally, has its storage reclaimed.

GC GCMutator finalizer
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Finalization Impact

✘ Execution speed
● slower allocation
● finalizer thread affects scheduling

✘ Heap size
● memory retained longer

✘ Collection pauses
● longer
● discovery and queuing
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Finalization Suggestions

■ Use for cleanup of external resources
■ Limit the number of finalizable objects
■ Reorganise classes

● finalizable object holds no extra data
■ Beware when extending finalizable classes

● in standard libraries (e.g. GUI elements)
■ Use one of the java.lang.ref reference

objects instead
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Object Pools

■ Manual memory management
● allocation serialised
● current JVMs support fast, parallel allocation

■ Data is kept artificially alive
● adds pressure on garbage collector

■ Breaks down abstract data types
● who is responsible for the instances?

■ Use if object initialization is really expensive
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Object Pool Example
class Node {

private static Node head = null; private Node next;
public static sync hroniz ed Node allocate() {

if (head == null) return new Node();
Node result = head; head = head. next; return result;

}
public static sync hroniz ed void free(Node n) {

n. next = head; head = n;
}
. . .

}
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Real Customer Problem

■ Object pools never truncated
● peak live data 300MB
● average live data 100MB

■ Problem
● other garbage generated from libraries
● GCs less frequent, but dealt with 300MB

■ Solution
● removed object pools; application ran faster!
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Avoid Frequent Bad Habits

■ Size heap appropriately
● maximum should be larger than working set
● leave room for the system to adapt

■ Avoid java.lang.System.gc()
● especially when using CMS!

■ Consider setting references to null early
● large objects in particular
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GCs Have Bad Habits Too. . .

✔ The great thing about using a GC is that

It does everything automatically, behind your back!

✘ The bad thing about using a GC is that

It does everything automatically, behind your back!
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GCs Have Bad Habits Too. . .
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It does everything automatically, behind your back!
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Problem Hunting

■ Most of the time
● GC helps the programmer avoid problems

■ When things do go wrong though
● problems very hard to track down
● lack of feedback from the GC

● everything is automatic, remember?
● e.g. the return of the memory leaks
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Tools

■ Needed
● due to the implicit nature of GC

■ Current ones too expensive to use in deployment
environments

■ JVMTI
● Java Virtual Machine Tool Interface
● for development and monitoring tools
● JSR 169
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Overview

■ Introduction / GC Benefits
■ Simple GC Techniques
■ Incremental GC Techniques
■ Generational GC Techniques
■ GC in the Java HotSpot Virtual Machine
■ GC Issues in the Real World

➜ Conclusions
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Conc lusions

■ Several types of GC
● serial, parallel, concurrent, . . .
● each suited to a subset of applications
● the HotSpot JVM provides choices
● choose the one appropriate for you

■ GC simplifies Java programs
● but developers should learn how to use it!
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QUESTIONS?
ton y.printezis@sun.com
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