
Windows Internals Course – University of Tokyo – July 2003

Virtual Memory Exercises

Arun Kishan – 2003/07/18a

Virtual Memory

The Windows NT operating system features a large and highly complex virtual memory
system. Like most traditional systems, NT features a demand paging virtual memory
system that allows applications to use more memory than the machine may physically
possess. NT also provides support for more advanced virtual memory management
features such as large page mappings (contiguous blocks of physical memory mapped
to contiguous blocks of virtual memory) and address space windowing (mapping
physical memory directly to views in the user address space). This latter ability allows
machines to access physical memory beyond the range directly addressable by the
logical address bits.

Question: What is the advantage of large page mappings? On systems for which a
large page is equal to four large pages, when is it possible to satisfy a large page
allocation request? What is a possible disadvantage of using large pages?

For all user-mode processes on the system, NT maps itself into the upper portion of the
address space. The exact demarcation between the user-mode and kernel-mode
portions of the address space depends on the image options (whether or not it requests
a larger user address space) and whether or not the operating system is operating in
native 64-bit or 32-bit mode. For example, on a standard 32-bit installation of Windows
NT, the user-mode component may consume the lower 2 gigabytes of the address
space, and the kernel may consume the rest.

Question: What is the advantage of mapping the kernel into the address space of every
user process?

NT uses a multi-level page table scheme to perform the virtual-physical address
translation, with most all processors that host NT providing a hardware translation
lookaside buffer (TLB) that caches the most recently used translations. This approach
allows the page tables themselves to be paged, allowing for conservation of physical
memory when an address space is particular sparse. Further, the page tables describing
system space may be shared by the page directories for all the processes in the system.
An interesting feature of the NT system is that it performs a recursive self-map of a
process’ page tables into a contiguous portion of the kernel-mode part of the process’
address space (e.g., the table mapping the lowest four megabytes of the address space
at address z, the table mapping the next four megabytes at z + page size, and so on),
allowing the virtual address of a PTE providing the translation for any particular virtual
address to be determined with ease.

Question: On standard x86 systems, a two-level page table scheme is used such that
each process has a page table directory (the size of a page), containing pointers to 1024

©Microsoft Corporation

page tables, each of which contains 1024 PTEs, each of which maps 4 kilobytes. Note
that mapping all page tables into the address space of a process thus consumes 4
megabytes of address space. Suppose that the CR3 processor register contains the
physical address of the page directory for a process, which is swapped during a context
swap between threads from different processes. How can the page directory for a
process be setup, using the value in CR3, such that all page tables for the process are
automatically mapped to virtual address 0xC0000000, and will automatically be re-
mapped to another process’ page tables after a context switch? What might have been a
possible motivation for developing the fast virtual address – PTE address translation
afforded by this page table mapping scheme?

Page Fault Handling

As described above, NT provides a demand-fault mechanism for loading the pages into
the physical memory of an executing process. Until the page-in request is satisfied, the
faulting thread remains suspended, after which point it is resumed by the operating
system. Any user-accessible address may be paged (i.e., may instantaneously have an
invalid PTE in the relevant page table), though no page fault may be incurred at IRQL
greater than or equal to DISPATCH_LEVEL, as a page fault operation may cause a
deadlock in the paging path. As such, kernel-mode code must take care when accessing
particular virtual addresses at elevated IRQL. User-mode code can freely access any
address in user space, as all user code runs at PASSIVE_LEVEL.

Experiment 1: Find and execute the tokyo_vm.exe process. You will find that when
executed on its own, it will appear to exit without generating any input. This is because
the process is incurring a series of page access violations that are unhandled by the NT
operating system. However, if executed via TokOSLaunchFaultingProcess, the caller
may supply a page fault handler that is granted an opportunity to process each page
fault as it occurs. You may assume that the target process will incur only two types of
faults: demand-zero stack faults and demand-page code faults. By inspecting the CPU
context of the faulting thread, the identity of the fault may be determined and handled
accordingly. In either case, the first step is to build a mapping for the faulted page to
physical memory; in this exercise this is equivalent to committing the relevant virtual
address region using NT APIs. You may assume that this operation also zeros the
corresponding physical page automatically. When copying a segment of code to the fault
address, be sure to flush the instruction cache before exiting the handler (and thus
resuming the faulting thread). If all page faults are handled successfully, tokyo_vm.exe
will produce an output based upon the passed parameters. Observe the output of the
program for various inputs. Do you recognize the function?

Question: Immediately after writing dynamically generated code to memory or modifying
already present code, one typically flushes the data cache and invalidates the instruction
cache. Why is this?

Shared Memory

In NT, sections or file mappings are kernel objects used to describe a shareable region
of virtual memory. Sections and file mappings are used to describe both private shared
memory and mapped files. Mapping a view of a section allocates a window of virtual
address space in the target process and computes the appropriate virtual to physical
mappings using the prototype PTEs associated with the section object itself. Shared

©Microsoft Corporation

©Microsoft Corporation

memory apertures allocated in this way can be used to map shared DLLs into the
address space of multiple running processes (while consuming the requisite set of
physical pages only once) or as a means of enabling efficient IPC. In the latter case,
though the actual data transfer is relatively efficient, some sort of kernel synchronization
mechanism is required to serialize access to the shared memory.

Question: Suppose some user-mode lock is dependent only on interlocked operations
to a single memory location and falls back to suspending threads using event objects in
the event of contention, such that the thread that releases the lock may signal an event
to indicate lock availability. Would allocating such a lock in a shared memory region
automatically provide synchronization between competing threads from different
processes? If so, explain how it would work. If not, explain some of the issues that could
arise.

Experiment 2: Develop a solution to the classic consumer-producer problem using a
bounded buffer allocated in a region of memory shared between two processes (with
separate console windows). Make sure that the shared buffer is large enough to
accommodate at least 128 outstanding data entries before requiring the data producer to
be obstructed. Since the problem is restricted to a single producer and a single
consumer, note that no more than two semaphore objects are required for correct
synchronization. For the data producer process, simply read each character as it is
entered into the standard input console (without awaiting the carriage return that signals
end of line) and places it into the circular communication buffer. To ensure key
sequences such as Ctrl-C continue to operate as expected, defer the processing of more
complex input forms to the OS when adjusting the input console mode for this portion of
the experiment. Once the consumer process receives notice of generated data, it should
remove available characters from the shared buffer and display them to the screen.

