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Threads 
 
In the Windows NT operating system, threads represent the primary unit of execution. 
Threads are pre-emptively scheduled by the kernel scheduler with the goal of obtaining 
maximum CPU utilization. The scheduler represents the most complex piece of code in 
the system, as it must take into account thread priorities, the presence of multiple logical 
and physical processors, CPU affinities, and moving forward, real-time constraints when 
assigning a thread to a particular CPU for execution. In this exercise, you will explore 
how the NT operating system deals with priority inversion, how one can use 
cooperatively scheduled threads, and techniques user-mode programs can use to 
increase throughput and parallelism. 
 
Priority Inversion 
 
Priority inversion is the phenomenon that causes a high priority thread to be delayed 
indefinitely while awaiting a resource held by a low priority thread. The low priority thread 
is often unable to run due to the presence of an unrelated medium priority thread. In the 
situation that results, one finds that the high priority thread is effectively denied the CPU 
by the lower medium priority thread. 
 
NT combats this phenomenon with the balance set manager, a low real-time priority 
(level 16) system thread created during system initialization that executes the routine 
KeBalanceSetManager(). This routine periodically scans the scheduler’s ready queues 
in search of long waiting variable priority (15 or less) ready threads to boost, as well as 
various other maintenance/performance tuning tasks, such as outswapping kernel 
stacks, tweaking the depth of the per-processor pool lookaside lists, and invoking the 
working set manager. When a thread is boosted, its priority is set to 15 and its quantum 
set to match the appropriate value for lock ownership. Once the quantum expires, the 
priority of the thread reverts to it original level. 
 
Question: How does this combat priority inversion? 
 
Experiment 1: Write a small program that has a low, medium, and high priority thread 
that exhibits priority inversion. Choose some amount of CPU bound time for the medium 
priority thread. Use a synchronization primitive such as a mutex as the critical resource 
shared between the high and low priority threads and make note of the completion order 
of the various threads. Make sure that the minimum priority used is the lowest real-time 
priority level (16) in order to guarantee that the balance set manager does not moderate 
priority levels. Use the base priority of PROCESS_PRIORITY_CLASS_REALTIME, 
which requires the  caller to possess the SE_INC_BASE_PRIORITY_PRIVILEGE. Take 
care to avoid using printf or similar functions until the main body of the threads has 
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completed, as these routines can cause an implicit yield of the thread, disrupting 
observance of priority inversion. 
 
Experiment 2: Modify the program above to run at lower priority levels, such that the 
balance set manager moderates thread priorities to combat priority inversion. Compare 
the completion times of the high priority threads. Experiment with the CPU bound run 
time of the medium priority thread in order to exhibit priority inversion if the value from 
the first experiment does not yield the expected results. Hint: Since thread startup may 
incur page faults (i.e., result in implicit context switches), try to ensure the threads have 
all completed initialization and are beginning to execute user-specified code before 
beginning this experiment. For best results, use a uni-processor machine, which 
guarantees that the single highest priority ready thread is the only one running. 
 
Question: Rather than using the balance set manager, what is an alternative scheme 
NT could have used to combat priority inversion? What are the tradeoffs?  
 
Threads and Fibers 
 
All threads in the NT operating system are preemptively scheduled, i.e., at IRQL below 
DISPATCH_LEVEL, a thread may be halted at any instant by the operating system and 
resumed at a later time. NT may be distinguished from other operating systems by 
noting that much of the core system code itself is pre-emptible. However, in certain 
cases, a well written application may benefit from the ability to manually instruct the 
system when it is done performing work and another thread can be scheduled. Such 
cooperatively scheduled threads are available in NT in the form of lightweight fibers, 
which are essentially executable user-mode co routines that are grafted onto an 
underlying pre-emptible NT thread. Co routines allow control to be transferred 
deterministically by the programmer between distinct pieces of code and later resumed 
exactly at the point of transfer. They may be distinguished from function calls as each 
invocation requires its own stack and program counter (i.e., state), and as such fibers 
assume thread-like characteristics. These “context switches” are performed entirely in 
user mode and require no intervention of the operating system. Note with the NT fiber 
scheme, processes as a whole remain preemptively scheduled and thus a rogue 
process cannot monopolize the CPU resource. 
 
Question: What is a disadvantage of using co routines? 
 
Experiment 3: Write a small function that accepts as input two binary trees and returns 
a boolean value to indicate whether or not the sequence of values are the same when 
each tree is traversed in-order. Generate two binary trees containing 15 random 
elements in the range [75, 99] (discarding duplicates) and empirically verify the output of 
the function by displaying the in-order traversal of both trees. The function must return 
FALSE upon the first discovery of inequality in the in-order tree structure, e.g., it is 
unacceptable to determine the complete in-order traversal of both trees and then 
proceed to compare them. Use fibers (co routines) to simplify the code structure. 
 
Question: Comment on a purely threaded approach to solving the same problem. Would 
it be more complex? How would the performance compare? 
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Non-blocking Data Structures 
 
Most often shared data structures in user mode programs are protected by 
synchronization primitives such as a mutex or critical section. The minimum number of 
atomic (interlocked) operations these synchronization primitives require is typically two – 
one at the time of acquisition and another at the time of release. These interlocked 
operations typically atomically test and modify a memory location, requiring expensive 
interprocessor synchronization. Thus, whenever possible, it is favorable to reduce the 
requisite number of interlocked operations while still maintaining correctness. 
Additionally, should a thread fail while holding a synchronization primitive, or is 
preempted in favor of a higher priority thread or interrupt handler in the CPU, no other 
threads ready to access the queue will be able to make forward progress. Non-blocking 
data structures attempt to address both issues – wherever possible, they reduce the 
required number of interlocked operations while also reducing the size of the critical 
region to a single instruction (the interlocked operation). Consult the table below for a 
comparison between interlocked LIFO lists and traditional lock-based lists: 
 

 Lock-Based Lock-Free 

Push 
AcquireLock(); 
NewNode->Next = Head; 
Head = NewNode; 
ReleaseLock(); 

 
do { 
    OldHead = Head; 
    NewNode->Next = OldHead; 
    old =  CmpExch(&Head, NewNode, OldHead) 
} while (old != OldHead); 
 

Pop 

AcquireLock(); 
Top = Head; 
if (Top != NULL)  
    Head = Top->Next; 
ReleaseLock(); 
return Top; 

 
while (Top = Head) { 
    old = CmpExch(&Head, Top->Next, Top) 
    If (old == Top) 
        break; 
} 
return Top; 
 

 
 
(The semantics of CmpExch(address, newvalue, oldvalue) are as follows: the processor 
atomically tests if contents of address matches oldvalue, and if so, the contents is set to 
newvalue. Regardless of whether or not the operation succeeds, the value returned by 
CmpExch  indicates the original contents of address. By definition, if CmpExch is 
successful, the returned value is oldvalue.) 
 
Note the paradigm in each model: in the lock-based model, exactly one thread may be 
executing the code within the locked region at any time, whereas within the lock-free 
model, up to n threads (where n is the number of processors) may execute any 
instruction within the routine at the same instant. In the first model, the thread need not 
worry about the possibility of an operation failing once the lock is obtained, whereas in 
the second, a thread is not guaranteed that the AtomicSwap operation will succeed, and 
may potentially need to repeat the loop several times before the operation is 
successfully completed. 
 
Question: In the lock-free model, how many threads can concurrently fail to successfully 
complete an AtomicSwap operation? Since many threads can fail and may need to 
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subsequently repeat the code, what is the advantage of the lock-free model over the 
lock-based model? 
 
Experiment 4: Write a program that executes 128 threads for 10 seconds and 
demonstrates the throughput changes observed when using either a lock-free data 
structure or a lock-based data structure. Each thread should perform a push and 
followed by a pop, simulating work in between each (perform CPU bound work for some 
interval), repeating this sequence of operations until the timer expires. In the lock-based 
model, use any synchronization primitive in conjunction with the basic code structure 
above. For the lock-free case, use the InterlockedSLists provided by the platform SDK. 
In both cases, track the total number of completed pushes and pops using the 
InterlockedIncrement primitives. Compare the total throughput in both cases and 
comment on the differences. Is it as you expected? (Note: Since more than 64 thread 
handles will exist, the main thread cannot wait for the slave threads to complete using a 
single WaitForMultipleObjects. Design an alternate scheme that will avoid this limitation.) 
 
Question: The actual implementation of interlocked lists is slightly more complex than 
outlined above. Stored in the bottom bits of the Head pointer is a sequence number that 
is incremented in conjunction with each successful Push operation. What purpose does 
this sequence number serve? What problem with the above code does the sequence 
number not solve? Hint: Consider what could happen to nodes that are freed once they 
are removed  from a non-blocking data structure. 
 
  


