
Windows Internals Course – University of Tokyo – July 2003

Registry Exercises

Dragos Sambotin – 2003/07/18a

The Registry

The Registry is the centralized configuration database for the Windows NT
operating system, as well as for applications. The Registry stores information
about tuning parameters, kernel executive configuration, device configuration,
and user preferences. Aside from Win32 APIs exposed for user mode
applications to manipulate the registry, the bulk of the registry
implementation lives in kernel mode, alongside with the other executive
components (memory manager, object manager, scheduler, etc.) and it is
known as the Configuration Manager. When accessed from kernel mode, the
configuration Manager namespace maps into the object manager namespace
starting at the root node ‘\registry’. Namespace manipulation in kernel mode
is done via handle based Nt* APIs or using Ob (Object Manager) routines.
For example user mode path HKEY_LOCAL_MACHINE\Software\Classes maps
to ‘\registry\machine\Software\Classes’ in kernel mode. That is the fully
qualified path of a registry key object kernel mode components use.

Kernel Filter Drivers

Starting with Windows XP, a callback-like notification mechanism has been
added to the operating system in order to allow for building monitoring tools
of kernel mode drivers that can filter accesses to the registry. A kernel mode
driver can register a callback with configuration manager and it will be
notified for every operation (read/write) that is attempted against the
registry namespace. Configuration manager will invoke the registered
callback for each operation. For Key Create and Open the callback will be
invoked twice. Once before the operation is performed (the ‘pre’ notification)
and once after the operation has been performed (the ‘post’ notification). The
filter driver should return STATUS_SUCCESS out of the callback, unless he
wants to veto the operation. For a complete description on how the registry
callback mechanism works, please consult attached “Registry Callbacks.doc”
document. Additional details about type definitions and function prototypes
can be found in ntddk.h

The purpose of this exercise is to show step by step how a registry
monitoring tool (regmon-like) can be implemented by a kernel mode driver
using the above callback mechanism. For details on how to write a kernel
mode driver, please consult the DDK Design Guide under ‘Kernel-Mode Driver

©Microsoft Corporation

©Microsoft Corporation

Architecture’ section. For convenience the ‘cancel ‘ DDK sample will be
used/extended in this exercise.

Experiment 1: Modify the sample driver above to register an empty callback
with the configuration manager. Upon exit, the driver should un-register its
callback.

Experiment 2: Modify the driver above to count the number of values that
are written to the registry during one driver uptime cycle.

Question: If we had ‘pre and post notifications, which one we would’ve
used? (A: ‘post’ since we need to know if the operation succeeded – Server
Only).

Experiment 3: Keeping in mind that only one pre and one post notification
is delivered to a particular thread and in this exact order, extend the above
to dump in the debugger every time an attempt to create a key fails. Key
name and the call elapsed time should be dumped. Hint: Store away pre
notifications in a table alongside with the thread id.

Question: What if we re interested only in keys under
‘\registry\machine\software\classes’

Experiment 4: Registry is a very active component. Various OS components,
services and applications read and write to the registry every time. Doing a
lot of work inside the callback can lead to serious system performance
degradation. A better idea is to have a client server model where the bulk of
the processing work is done on a separate thread that runs in the
background. Thread wakes up only when there is work to be done. Modify
the driver above to dump the key name in the debugger on a separate
worker thread. Hint: Queue an work item in the executive delayed work
queue.

Question: How can this be optimized further?

