
© Microsoft Corporation 1

Windows Kernel Internals
NT Registry Implementation

David B. Probert, Ph.D.
Windows Kernel Development

Microsoft Corporation

© Microsoft Corporation 2

Outline
• High level overview
• System whereabouts
• Native registry APIs
• Implementation Details
• I/O
• Mounting a Hive
• Life Span
• Backup/Restore
• Limits

© Microsoft Corporation 3

High Level Overview

• Logical:
– Registry = “a FS within a file”
– Keys directories
– Values files

• Physical:
– Registry = collection of Hives
– Hive = collection of Bins
– Bin = collection of Cells
– Cell = unit of allocation (contains raw data)

© Microsoft Corporation 4

Whereabouts

User
KERNEL

NT APIs

MM
Memory Manager

Volatile Storage

ADVAPI32.DLL svchost.exe

Win32 Registry APIs regsvc.dll

CM (registry)

.LOG file
(NO_INTERMEDIATE_BUFFERING)PRIMARY file

(CC PRIVATE_WRITE streams)

CC
Cache Manager

NTFS/FAT

Disk

© Microsoft Corporation 5

NT Registry APIs: Key Ops

Multi-key version of NtNotifyChangeKeyNtNotifyChangeMultipleKeys
(knames[], bsubtree)

notify caller of changes to a key/subtreeNtNotifyChangeKey
(khandle, bsubtree)

flush changes associated with key to diskNtFlushKey (khandle)

change the name of keyNtRenameKey (khandle, string)

set info on keyNtSetInformationKey
(khandle, info)

get info about a keyNtQueryKey (khandle)

return the name/info of subkey[i] of keyNtEnumerateKey (khandle, i)

mark key to delete at last handle closeNtDeleteKey (khandle)

open a new or existing keyNtCreateKey (kname)

© Microsoft Corporation 6

NT Registry APIs: Value Ops

delete a value belonging to a keyNtDeleteValueKey (khandle, vname)

set a valueNtSetValueKey
(khandle, vname, value)

get multiple valuesNtQueryMultipleValueKey
(khandle, vnames[])

get value (data & type)NtQueryValueKey (khandle, vname)

return the name/info of value[i] of keyNtEnumerateValueKey (khandle, i)

Misc Ops

optimize access to khandles[] NtCompactKeys (count, khandles[])

get count of open khandlesNtQueryOpenSubKeys (kpath) under kpath

© Microsoft Corporation 7

NT Registry APIs: Hive Ops

compress hive (inplace SaveKey) NtCompressKey (roothandle)

prepare to replace hive at next reboot NtReplaceKey
(newfile, roothandle, oldfile)

remove a subtree or hive loaded or
restored at key kname

NtUnloadKey (kname)

mount a subtree or complete hive at key NtLoadKey (khandle, hivefilename)

copy a subtree or complete hive at key NtRestoreKey
(khandle, hivefilename)

write the subtree at key khandle to file
via fhandle

NtSaveKey (khandle, fhandle)

© Microsoft Corporation 8

Implementation Details
• A Hive is a file (two if you also count the .LOG)

– PRIMARY – holds the actual hive data
– .LOG – used only when flushing (crash recovery)

• Two storage mappings:
– Stable – maps to the backing file
– Volatile – in paged pool, lost after reboot

• PRIMARY grows in 256K increments – to avoid
fragmentation

• First page (4k) is the header
• Followed by chained Bins
• I/O to primary is cached, PRIVATE_WRITE stream (no

CC Lazy Flush, no MPW)

© Microsoft Corporation 9

Hive Layout

PRIMARY
Hive File:

HIVE HEADER (HBASE_BLOCK)

Size is 4K

Sequence1 (ULONG)

Signature (‘regf’)

Sequence2 (ULONG)
TimeStamp

Major (ULONG)
Minor (ULONG)

……other……..
Bin 0

size is multiple of 4K

(x86 PAGE_SIZE)

RootCell (HCELL_INDEX)

Length (ULONG)

…reserved up to 1k -4 bytes…..

Bin 1 CheckSum (ULONG)

…reserved up to 4K…..

…………..

Bin N

© Microsoft Corporation 10

Bin
• Collection of cells
• Size is increment of 4K
• Unit of hive growth
• 0x20 bytes header followed by raw cells

Signature (‘hbin’)

FileOffset (ULONG)
Bin Header

(HBIN)
Size (ULONG)

Reserved (ULONG[2])

TimeStamp

Spare (ULONG)

Bin: raw cell data

© Microsoft Corporation 11

Reading Stable Storage
• PRIMARY file is CC PRIVATE_WRITE stream

– no CC Lazy Flush, no MM MPW, no read ahead
– complete control over when data hits the disk

• Map/fault in 16K views of the hive in the system cache
address space (CcMapData)
– Views cannot cross 256K boundary

• Max 256 views per hive, then reuse the oldest unused
view (LRU)
– Regardless of hive size, we only commit 4 megs of address

space / hive (XP/.NET) no RSL
• PRIMARY is loaded as Stable storage, Volatile storage

is allocated from paged pool
• Dirtied data is pinned (CcPinMappedData) in physical

memory up to the first hive flush

© Microsoft Corporation 12

Cell
• Unit of storage allocation within the hive
• Size rounded at 8 bytes boundary
• Referenced as a ‘cell index’ (HCELL_INDEX)

– Cell index is offset within the file (minus 0x1000 – the header) – ULONG
– Volatile cell indexes have first MSB set (i.e. 0x8xxxxxxx)

• Free Display bitmap keeps track of free cells with the same size
– Up to 128 bytes exact match
– 128 bytes up to 2048 bytes, rounded at power of 2
– 2048 OR higher in the same list
– Free cells in the same ‘size class’ linked together

• Always reuse free cells if one with the same size (or bigger) exists
– If size is bigger than what we need, split & reenlist remaining

• Every time a cell is dirtied the whole page is marked dirty (in the Dirty Vector)

Cell : Size (LONG) raw data

positive = free cell
negative = allocated cell (actual size is – Size)

When cell is free, first ULONG
points to the next free cells in the

same size class

© Microsoft Corporation 13

Example – value lookup “foo”
Key Value List Value

• Raw cells are used to build up logical data
– Keys, values, security descriptors, indexes etc all are made up of cells
– Fetching in a key, might involve several faults spread across the hive file

Caching (Win2K) + locality enforcement (XP/.NET) to help with performance

ValueCount = N
ValueList (cell index)

……

……

Size Size
Val1 (cell index)
Val2 (cell index)

Val K (cell index)

Val N (cell index)

….

….

Size

….
Type

Data Length
Data Cell (cell index)

FOO

Data
Size

Whatever data was set
on this value

© Microsoft Corporation 14

Dirty Data
• When a cell is dirtied:

– Containing view is pinned in memory
– Entire page is marked dirty
– Reserve space in the .LOG

• Bitmap with dirty data at (x86) page level
• Used for flushing
• Header is always flushed

Header

Bin 0 (size = PAGE_SIZE) DIRTY

Bin 1 (size = PAGE_SIZE) CLEAN

DIRTY

Bin N (last bin) DIRTY

CLEAN

……..

……..

1
0

1
0

1

One bit per page

Hive (Stable Storage)

Bin K

(size = 2 *
PAGE_SIZE)

Dirty Vector

(RTL_BITMAP)

© Microsoft Corporation 15

.LOG
• .LOG file used only while flushing

– In the event of a crash during flushing
– Reset after successful flush

• Physical log
– Logs raw dirty pages
– Unaware of high level data types (keys, values

etc)
• Same name as the hive file (+ .LOG

extension)

Log header

Dirty Vector (variable size)

padding to sector alignment

dirty page

dirty page

dirty page

…….

.LOG file

Signature
Sequence1
Sequence2
Signature

CheckSum

..........
same as the header

for the PRIMARY
………

Signature (‘DIRT’)

Dirty bitmap

Log header

first 1K from
the PRIMARY

header

I/O: no buffering

Dirty Vector

Full pages
of dirty data

© Microsoft Corporation 16

Hive Flush
• The most expensive operation (by far)
• Triggered from outside – NtFlushKey/RegFlushKey
• … or from inside - Lazy Flush

– Fires off 5 seconds after the write occurs
(SetValue/DeleteValue/CreateKey/DeleteKey etc).

– Walks the list of the hives loaded in the system and flushes every one that has
dirty data

– Ignores hives marked as NO_LAZY_FLUSH
• Others may read during flush, no write allowed
• All dirty data in the hive is written out
• All or none makes it to the backing file
• It is only after the flush that data is persisted to disk

– i.e. If you:
• CreateKey + SetValue
• machine crashes (before lazy flush has a chance to flush the hive)
• the key/value is lost

• Automatic flush at hive unload

© Microsoft Corporation 17

Hive Flush – algorithm
1.Write the LOG
2.Flush the LOG

3.Header.Sequence1++; compute checksum
4.Write the Header to PRIMARY
5.Flush the PRIMARY

6.Write all dirty pages
7.Flush the PRIMARY
8.Header.Sequence2++; compute checksum
9.Write the Header to PRIMARY
10.Flush the PRIMARY

11.Reset LOG

Past this point all dirty data
is in the log (on disk)

Crash past this point Sequence1 != Sequence2
so we know the PRIMARY image has partial data

CcSetDirtyPinnedData
CcUnpinData

CcFlushCache

PRIMARY image is valid (on disk).

© Microsoft Corporation 18

Loading (Mounting) a Hive

• When:
– At boot: boot loader (NTLDR) & kernel

(ntoskrnl.exe)
– Explicitly, by calling NtLoadKey/RegLoadKey

• Requires Restore privilege
– File are opened in exclusive mode; and kept

open by the kernel

© Microsoft Corporation 19

Loading (Mounting) a Hive

• How:
– Read PRIMARY header; check it’s validity (checksum,

signature etc)
– If sequence numbers don’t match:

• Hive has partial data, apply .LOG on top of PRIMARY

– Build internal mappings as needed (Bins to Views)
– Physical integrity check:

• Walk the whole hive, check every single cell
– Logical integrity check:

• Walk the tree, check every key/value etc.

© Microsoft Corporation 20

Hives On a Typical (Clean) System

• Machine hives %windir%¥system32¥config¥*
– SYSTEM – mounted at HKLM¥System
– SOFTWARE – mounted at HKLM¥Software
– SAM – mounted at HKLM¥SAM
– SECURITY – mounted at HKLM¥Security
– .DEFAULT – used when a new account is created

• Failure to load any of these OS will not boot

© Microsoft Corporation 21

Hives On a Typical (Clean) System
• User hives two per each user account

– NTUSER.DAT – roams (if roaming profile enabled)
• Mounted under HKEY_USERS¥<SID>
• Mounted under HKEY_USERS¥<SID>_Classes

– UsrClass.DAT – local (does not roam) – per user registration data
– Stored in %USERPROFILE% folder.
– Loaded at logon, or whenever the user is impersonated

• ‘Special’ user hives
– Two per account as above; always loaded

• S-1-5-18 SYSTEM account
• S-1-5-19 Local Service
• S-1-5-20 Network Service

• Clusters – one additional hive: CLUSTER (cluster db)
– %windir%¥Cluster¥Cluster

• Any user/app with Restore privilege can mount own hive

© Microsoft Corporation 22

Life Span

Boot Loader
(NTLDR)

KERNEL
(ntoskrnl.exe)

system process

smss.exe

winlogon

KERNEL
system process
(worker thread)

-loads ntoskrnl.exe and hal.dll
-loads SYSTEM hive in memory
-uses info in the hive to load ‘load at boot’ drivers
-starts the executive and passes in memory copy of the
system hive (LoaderParameterBlock)

Phase1Initialization
-Init MM
-Init CM (CmInitSystem1): gets memory copy of the

SYSTEM hive from LoaderBlock and mounts it in PagedPool
- Init IO subsystem

-Initialize paging file
-Finish registry initialization (calls NtInitializeRegistry)

-Loads rest of system32¥config¥* hives
-Converts SYSTEM hive to mapped

-Loads/unloads user hives (logon/logoff)

Power On

-CmShutdownSystem
-IoShutdownSystem

Power Off

© Microsoft Corporation 23

Backup/Restore …of the registry

• Backup:
– NtSaveKey(Ex) – saves an entire hive to a file
– Also does compression

• Tree copy to a in memory temporary & volatile hive
• Save temporary to destination file

– Slow on big hives
– Ex called with REG_NO_COMPRESSION much faster

• Just dumps what’s there to the file
• No compression.

– Requires SeBackupPrivilege
• Restore:

– NtReplaceKey(ExistingFile,NewFile,OldFileName) – followed by a reboot
• NewFile hive is mounted/checked/unmounted
• ExistingFile OldFileName ; NewFile ExistingFile
• Both files are kept open until reboot

– Any changes made to the hive past this are lost at reboot
» Because the hive still maps to the old (existing) file

– Requires SeRestorePrivilege

© Microsoft Corporation 24

Limits
• Win2K

– RSL (Registry Size Limit) up to 80% sizeof(PagedPool)
• Entire hive file loaded in paged pool

– SYSTEM hive ~ 12 MB
• sizeof(SYSTEM hive) + sizeof(ntoskrnl.exe) + sizeof(hal.dll) +

sizeof(all drivers loaded at boot) <= 16 MB
– Win2k loader only sees the first 16 MB of physical memory

• XP/WS03
– No RSL – up to available space on system drive

• only 4MB commit per hive
– Sizeof(SYSTEM hive) <= min(200 MB, ¼ physical memory)

• XP/.NET loader sees ¼ physical memory

© Microsoft Corporation 25

Summary

Registry intended to maintain config info
Win32 registry interfaces in Advapi32
Registry implementation in kernel
Native APIs are NT APIs
Used by kernel, drivers, system, apps,

security, policy, etc.

© Microsoft Corporation 26

Discussion

	Windows Kernel InternalsNT Registry Implementation
	Outline
	High Level Overview
	Whereabouts
	NT Registry APIs: Key Ops
	NT Registry APIs: Value Ops
	NT Registry APIs: Hive Ops
	Implementation Details
	Hive Layout
	Bin
	Reading Stable Storage
	Cell
	Example ? value lookup “foo”
	Dirty Data
	.LOG
	Hive Flush
	Hive Flush ? algorithm
	Loading (Mounting) a Hive
	Loading (Mounting) a Hive
	Hives On a Typical (Clean) System
	Hives On a Typical (Clean) System
	Life Span
	Backup/Restore …of the registry
	Limits
	Summary
	Discussion

