2024 年度 / AY2024

大学院入学試験問題

Graduate School Entrance Examination Problem Booklet

数 学 1 / Mathematics 1

試験時間 / Examination Time:

13:00-13:50

注 意 事 項 / Instructions

- 1. 試験開始の合図まで、この問題冊子を開かないこと.

 Do not open this problem booklet until the start of the examination is announced.
- 2. 本冊子に落丁, 乱丁, 印刷不鮮明の箇所などがあった場合には申し出ること. If you find missing, misplaced, and/or unclearly printed pages in the problem booklet, ask the examiner.
- 3. 本冊子には和文および英文の第1問がある. 日本語ないし英語で解答すること. This booklet contains Problem 1 both in Japanese and in English. Answer the problem in Japanese or English.
- 4. 解答用紙 1 枚が渡される. 必要なときは解答用紙の裏面を使用してもよい. You are given one answer sheet. You may use the back of the sheet if necessary.
- 5. 解答用紙上方の指定された箇所に、受験番号およびその用紙で解答する問題番号を記入すること.

Fill the designated blanks at the top of the answer sheet with your examinee number and the problem number you are to answer.

- 6. 草稿用紙は本冊子から切り離さないこと.
 Do not separate the draft sheets from this problem booklet.
- 7. 解答に関係ない記号,符号,文言などを記入した答案は無効とする.
 Any answer sheet including marks, symbols and/or words unrelated to your answer will be invalid.
- 8. 解答用紙および問題冊子は持ち帰らないこと.
 Do not take either the answer sheet or the problem booklet out of the examination room.

受験番号 / Examinee number	No.

上欄に受験番号を記入すること. Fill the above box with your examinee number.

(草稿用紙)

第1問

 \mathbb{R}^3 を 3 次元実列ベクトル全体の集合, $\mathbb{R}^{3\times3}$ を 3×3 の実行列全体の集合とする。 $n_1, n_2, n_3 \in \mathbb{R}^3$ は一次独立な単位長ベクトル, $n_4 \in \mathbb{R}^3$ は n_1, n_2, n_3 と平行でない単位長ベクトルとする。また,正方行列 A、B を

$$\mathbf{A} = egin{pmatrix} n_1^\mathrm{T} - n_2^\mathrm{T} \ n_2^\mathrm{T} - n_3^\mathrm{T} \ n_3^\mathrm{T} - n_4^\mathrm{T} \end{pmatrix}, \quad \mathbf{B} = \sum_{i=1}^4 n_i n_i^\mathrm{T}$$

とする. ここで、 \mathbf{X}^{T} 、 \mathbf{x}^{T} はそれぞれ行列 \mathbf{X} の転置行列とベクトル \mathbf{x} の転置ベクトルを表す. 以下の問いに答えよ.

- (1) Aの階数が 3となるような n_4 に関する条件を求めよ.
- (2) 3次元ユークリッド空間 \mathbb{R}^3 において以下の 3 つの条件を満たす 4 つの平面 $\Pi_i = \{x \in \mathbb{R}^3 \mid n_i^{\mathrm{T}}x d_i = 0\}$ $(d_i$ は実数, i = 1, 2, 3, 4) を考える:(i) A の階数は 3 である,(ii) $\Omega = \{x \in \mathbb{R}^3 \mid n_i^{\mathrm{T}}x d_i \geq 0, i = 1, 2, 3, 4\}$ が空集合ではない,(iii) Π_i (i = 1, 2, 3, 4) に接する球 C ($\subset \Omega$) が存在する.このとき C の中心の位置ベクトルをベクトル $u \in \mathbb{R}^3$ を用いて $A^{-1}u$ の形で表す. d_i (i = 1, 2, 3, 4) を用いて u を表せ.
- (3) Bが正定値対称行列であることを示せ.
- (4) 4 つの平面 $\{x \in \mathbb{R}^3 \mid n_i^{\mathrm{T}}x d_i = 0\}$ $(d_i$ は実数, i = 1, 2, 3, 4) への距離の 2 乗和が 最小となる点 P を考える. P の位置ベクトルをベクトル $v \in \mathbb{R}^3$ を用いて $\mathbf{B}^{-1}v$ の形で表す. n_i , d_i (i = 1, 2, 3, 4) を用いて v を表せ.
- (5) \mathbb{R}^3 において点 \mathbb{Q}_i (位置ベクトルを $x_i \in \mathbb{R}^3$ とする)を通り n_i に平行な直線を l_i とする (i=1,2,3). 任意の点 \mathbb{R} (位置ベクトルを $y \in \mathbb{R}^3$ とする)を l_i に直交射影した点を \mathbb{R}_i とする. \mathbb{R}_i の位置ベクトルを行列 $\mathbf{W}_i \in \mathbb{R}^{3\times 3}$ を用いて $y \mathbf{W}_i(y-x_i)$ と表す. $\mathbf{I} \in \mathbb{R}^{3\times 3}$ を単位行列とする.
 - (a) n_i と I を用いて W_i を表せ.
 - (b) $\mathbf{W}_i^{\mathrm{T}}\mathbf{W}_i = \mathbf{W}_i$ を示せ.
 - (c) 平面 $\Sigma = \{x \in \mathbb{R}^3 \mid a^{\mathrm{T}}x = b\}$ を考える($a \in \mathbb{R}^3$ は非零ベクトル,b は実数). 点 $S \in \Sigma$ は l_1 , l_2 , l_3 への距離の 2 乗和を最小にする点である. n_1 , n_2 , n_3 が互いに直交するとき,S の位置ベクトルをベクトル $w \in \mathbb{R}^3$ を用いて

$$\left(\mathbf{I} - rac{aa^{\mathrm{T}}}{a^{\mathrm{T}}a}\right)w + rac{ab}{a^{\mathrm{T}}a}$$

の形で表す. ただし, w は a,b には依存しないものとする. w を \mathbf{W}_i , x_i (i=1,2,3) を用いて表せ.

Problem 1

Let \mathbb{R}^3 be the set of the three-dimensional real column vectors and $\mathbb{R}^{3\times3}$ be the set of the three-by-three real matrices. Let n_1 , n_2 , and $n_3 \in \mathbb{R}^3$ be linearly independent unit-length vectors and $n_4 \in \mathbb{R}^3$ be a unit-length vector not parallel to n_1 , n_2 , or n_3 . Let A and B be square matrices defined as

$$\mathbf{A} = egin{pmatrix} oldsymbol{n}_1^{\mathrm{T}} - oldsymbol{n}_2^{\mathrm{T}} \ oldsymbol{n}_2^{\mathrm{T}} - oldsymbol{n}_3^{\mathrm{T}} \ oldsymbol{n}_3^{\mathrm{T}} - oldsymbol{n}_4^{\mathrm{T}} \end{pmatrix}, \quad \mathbf{B} = \sum_{i=1}^4 oldsymbol{n}_i oldsymbol{n}_i^{\mathrm{T}}.$$

Here, \mathbf{X}^{T} and \mathbf{x}^{T} denote the transpose of a matrix \mathbf{X} and a vector \mathbf{x} , respectively. Answer the following questions.

- (1) Find the condition for n_4 such that the rank of A is three.
- (2) In the three-dimensional Euclidean space \mathbb{R}^3 , consider four planes $\Pi_i = \{x \in \mathbb{R}^3 \mid n_i^{\mathrm{T}}x d_i = 0\}$ (d_i is a real number, and i = 1, 2, 3, 4) that satisfy the following three conditions: (i) the rank of A is three, (ii) $\Omega = \{x \in \mathbb{R}^3 \mid n_i^{\mathrm{T}}x d_i \geq 0, i = 1, 2, 3, 4\}$ is not the empty set, and (iii) there exists a sphere $C \subset \Omega$ to which Π_i (i = 1, 2, 3, 4) are tangent. The position vector of the center of C is represented by $A^{-1}u$ using a vector $u \in \mathbb{R}^3$. Express u using d_i (i = 1, 2, 3, 4).
- (3) Show that B is a positive definite symmetric matrix.
- (4) Consider the point P from which the sum of squared distances to four planes $\{x \in \mathbb{R}^3 \mid n_i^{\mathrm{T}}x d_i = 0\}$ (d_i is a real number, and i = 1, 2, 3, 4) is minimized. The position vector of P is represented by $\mathbf{B}^{-1}v$ using a vector $v \in \mathbb{R}^3$. Express v using n_i and d_i (i = 1, 2, 3, 4).
- (5) Let l_i be a straight line through a point Q_i , the position vector of which is $x_i \in \mathbb{R}^3$, parallel to n_i (i = 1, 2, 3) in \mathbb{R}^3 . Let R_i be the orthogonal projection of an arbitrary point R, the position vector of which is $y \in \mathbb{R}^3$, onto l_i . The position vector of R_i is represented by $y \mathbf{W}_i(y x_i)$ using a matrix $\mathbf{W}_i \in \mathbb{R}^{3\times 3}$. The identity matrix is denoted by $\mathbf{I} \in \mathbb{R}^{3\times 3}$.
 - (a) Express W_i using n_i and I.
 - (b) Show that $\mathbf{W}_i^{\mathrm{T}}\mathbf{W}_i = \mathbf{W}_i$.
 - (c) Consider a plane $\Sigma = \{x \in \mathbb{R}^3 \mid a^Tx = b\}$ $(a \in \mathbb{R}^3 \text{ is a non-zero vector, and } b \text{ is a real number})$. Let $S \in \Sigma$ be the point from which the sum of squared distances to l_1 , l_2 , and l_3 is minimized. When n_1 , n_2 , and n_3 are orthogonal to each other, the position vector of S is represented by

$$\left(\mathbf{I} - rac{oldsymbol{a}oldsymbol{a}^{\mathrm{T}}}{oldsymbol{a}^{\mathrm{T}}oldsymbol{a}}
ight) w + rac{oldsymbol{a}b}{oldsymbol{a}^{\mathrm{T}}oldsymbol{a}}$$

using a vector $w \in \mathbb{R}^3$ which is independent of a and b. Express w using W_i and x_i (i = 1, 2, 3).

(草稿用紙)

(草稿用紙)