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Do not open this problem booklet until the start of the examination is announced.
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If you find missing, misplaced, and/or unclearly printed pages in the problem
booklet, ask the examiner.
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This booklet contains Problem 1 both in Japanese and in English. Answer the
problem in Japanese or English.
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You are given one answer sheet. You may use the back of the sheet if necessary.
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HATBI &,
Fill the designated blanks at the top of the answer sheet with your examinee
mumber and the problem number you are to answer.
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Do not separate the draft sheets from this problem booklet.
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Any answer sheet including marks, symbols and /or words unrelated to your answer
will be invalid.
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Do not take either the answer sheet or the problem booklet out of the examination
room.
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Problem 1

Let R® be the set of the three-dimensional real column vectors and R3*3 be the set of the
three-by-three real matrices. Let i, na, and nz € 2 be linearly independent unit-length
vectors and ng € R? be a unit-length vector not parallel to n1, ng, or n3. Let A and B
be square matrices defined as

ni —ni 4

A= |ni-nl|l, B=Znin;-r.
T_ T -
?‘L3 —'n.4 i=1

Here, XT and 2T denote the transpose of a matrix X and a vector z, respectively. Answer
the following questions.

(1) Find the condition for n4 such that the rank of A is three.

(2) In the three-dimensional Euclidean space R3, consider four planes I; = {x €&
R? | nfz — d; = 0} (d; is a real number, and ¢ = 1, 2, 3, 4) that satisfy the
following three conditions: (i) the rank of A is three, (ii) @ = {z € R® | nfz —d; >
0, i=1, 2, 3, 4} is not the empty set, and (iii) there exists a sphere C (C Q) to
which II; (i = 1, 2, 3, 4) are tangent. The position vector of the center of C is
represented by A."lu using a vector u € R3. Express uw using d; (1 =1, 2, 3, 4).

(3) Show that B is a positive definite symmetric matrix.

(4) Consider the point P from which the sum of squared distances to four planes {z €
R3 | nfaz —d; = 0} (d; is a real number, and ¢ = 1, 2, 3, 4) is minimized. The
position vector of P is represented by B~v using a vector v € R3. Express v using
n;and d; (1 =1, 2, 3, 4).

(5) Let I; be a straight line through a point Q;, the position vector of which is @; € R3,
parallel to n; (i = 1, 2, 3) in R®. Let R; be the orthogonal projection of an arbitrary
point R, the position vector of which is y € R3, onto I;. The position vector of R; is
represented by y — W;(y — ;) using a matrix W; € R3%3, The identity matrix is
denoted by I € R3*3,

(a) Express W; using n; and L.

(b) Show that W} W; = W;.

(c) Consider a plane & = {z € R3 | aTz = b} (a € R3 is a non-zero vector, and
b is a real number). Let S € ¥ be the point from which the sum of squared

distances to Iy, l2, and I3 is minimized. When n1, ng, and ng are orthogonal
to each other, the position vector of S is represented by

I aa’l w ab
ala ala
using a vector w € R® which is independent of a and b. Express w using W;
and z; (1 =1, 2, 3).



(ERFHE)



(FERG FRAE)



