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Problem 1

In undirected graphs, a self-loop is an edge connecting the same vertex, and multi-edges are
multiple edges connecting the same pair of vertices. From now on, we consider undirected graphs
without self-loops and possibly with multi-edges. We say that a graph G is an A-graph if a
graph consisting of a single edge can be obtained from G by repeatedly applying the following two
operations.

B-operation When two multi-edges connect a pair of vertices, replace the multi-edges with a
single edge connecting the pair of vertices.

C-operation When one edge connects vertices u and v, another edge connects v and w (where
u # w), and there is no other edge incident to v, remove the vertex v and replace the two
edges with a new edge connecting u and w.

Answer the following questions.

(1) Let K, be a complete graph of n vertices. Answer whether each of K3 and Ky is an A-graph
or not.

(2) Show that every A-graph is planar.

(3) Give the maximum number of edges of an A-graph with n vertices without multi-edges,
with a proof. Also, give such an A-graph attaining the maximum for general n, with an
explanation.

(4) Give an O(m + n)-time algorithm which, given an undirected graph with n vertices and m
edges as an input, determines whether it is an A-graph or not. Explain also the graph data
structures used in the algorithm for realizing B-operations and C-operations.
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Problem 2

Let 3 be the set {a, b} of letters. For a word w € ¥* and two languages Ly, Ly C £* over I, we
define the language w{a + Lo, b Ly} € T* as follows, by induction on w.

e{ars Lo, b Ly} = {e}
(aw){a > Lo, b Ly} = {wiwa | wy € Ly, wy € w{a > Lg, b Ly}}
(bw){a = Lq, b Ly} = {wiwa | w1 € Ly, wa € w{a > Lg, b Ly}}.

Here, ¢ represents the empty word. For example, if w = aba, L, = {b" | n > 0}, and L = {a™ | n >
0}, then w{a ++ Lg, b~ Ly} = {b%a™b™ | £,m,n > 0}. Furthermore, for languages L, Lq, L, C ¥,
we define L{a = La,b — Ly} as Uyer w{a = La,b— Ly}. For example, if L = {a"b | n > 0},
Lo = {ab}, and Ly = {a" | n > 0}, then L{a — Lq, b Ly} = {(ab)™a™ | m,n > 0}.

Answer the following questions.

(1) Let L = {(ab)™a™ | m,n > 0}, Ly = {bb}, and Ly = {ab,a}. Express L{a + Lo, b+ Lp}
using a regular expression.

(2) Let L' = {a™V" | m > n >0}, L, = {a" | n > 0O}, and L} = {a™b™ | m > 0}. Express
{we X" |w{a — Lj,,b L}} C L'} using a regular expression.

(3) Let Ao = (Qo, 2, 00,90, Fo), A1 = (Q1,%,01,q1,0, F1), and Ay = (Q2,%, 2,20, F2) be
deterministic finite automata, and for each i € {0,1,2}, let L; be the language accepted by
Aj;. Here, Q;,d;, gi o, and F; are the set of states, the transition function, the initial state, and
the set of final states of A; (¢ € {0, 1,2}), respectively. Assume that the transition functions
d; € Qi x X = @Q; (i € {0,1,2}) are total. Give a non-deterministic finite automaton that
accepts Lo{a — Li,b+> Lo}, with a brief explanation. You may use e-transitions.

(4) For A; and L; (¢ € {0,1,2}) in question (3), give a deterministic finite automaton that
accepts {w € £* | w{a — L1,b~ Lo} C Lo}, with a brief explanation.

2



FeE 3

JARXDHBBERENLTC, 5EY M LIEY bFOEZETEV) TVBEERBIZOVWTEX
5. DY ML, 2EY POF—&, AZ—HMMEB2¥ Y N, HEAVFAES 1YY M CHEA
Ihab,

REEBRE, THPRE TR0 2 A LED, REFBRFCEZ2EY boRR—-MEB 112 1Y
MO NT B, TOWRIZ, 21:/%031\413 h'r REFREMAEY bDRSEIZ1IEY M3 OHA
T5. Bz, AZ—-MEE2EY M, T—2EF2y N, BLUORVF1EB2ADLYE, *#E
t/bﬁﬁW)P@@ﬁ#ﬁﬁL&éij&hUT4 EE 1Yy hEHITE., F-RXRERTER
THRRBIZR Y, ROTFT—2E2RETHETO E2HALETS.

TAEEFEIE, REEBIrSDIEY PABTA, NV F4Fzv /BEDIEY FHHB, ZERS
O—RF—202y bHEFED. ZERBR, ZECY MbhosRIu—RF—22 EL,
BEy POHFEARY F 4 Fzv 2 &1T5. ’

ZEEKEE, AX2-MEBDO1YY FHO U 2ZET I THUHHRETCHETSE. AX—1MEE
D1y PEEZZELAROIZIOY Z2H A2V TR, AZ—MEBD 2y PEZHRTAHEES
895, L, AX—MEED 2y MEHIZHET HEIN 0 DFE, 1Y FEIZZELE U O
i, JARXCEOBE-THRELZBDOTHS L HEL T, ZEAKINIRECZRES. £5Thidh
X, TORDIOy 73 A INhs, ADAOHEEZERI - RFF—keLT220y 2412
NERTHEFETS. TORDIAYIYAIANT, NYUTFAEBEZZITHD, AX—MEE2EY b,
RAP—=RF=R2EY b, RUFAEEZEDLELSEY POZEL Y FHO 1 OEBDIE I
PEDIDEMHRTS. LU D OBV EFRLESIEHIBOME ‘U 2L, FETRTINE O 2T
5. Fl, NVFAEEE2ZELLZOy YL I AVNMIRIBAE QO T35, #LT, RYF4
Fxy 7 DIERIZED ST, ZLERBITAHREBIZES.

BTORMWIEZ L.

(1) ZERFECETS, ANWALHABIETBENAYF 1 F oy 7MBORS#HNEET, 700
RIETHIR T N5 Mealy 2O R (FSM) OREEB R 2 RE. £/, TOREER
BUIIR T 27 Ry Ry a—F ¢ YT EISRIEGEBRER L HAOREZHRE L. Yoky
fhrra—F4r7eld, €y MldO1Ey bOARD D THY, Oy METRTO T
HBEEY MIDAREZRAVWBRE{LARTHS.

(2) B\ (1) TRORBEBRB I UHHRICETE, I B%, AJA L FSM OBFDIRE
DITVEY TV A—=F 4 VFREDZRE Y bE2AWET— LV LTRE. £, Rk
= T —VEREEAS S, AT A L FSMOBEDREDT v ky by a—F 4 Y IEBOEY Y
e ABEU, BEHITEAY T4 Foy ZEBOT — b L~OVEBRE, 2 A0 AND 7 — kK,
2ABAORT— M, NOT ' — b DHEMNTHKE L., 27XL, HATAHEY— b O
HBRIE R, REFAD ASMERT TR L 2 < TR W,

(3) MV (2) TRDZT—NHEA»S, ANALFSMOBEOREDT vy by a—F g
VIRHOEE Yy bEANEL, BEHATEAYF 4 Fzy ZEEEO CMOS NI VI RR L
NVERMERYE, AL, EBO S Y UARBIT 12MUTETAZ L. 4 v A—XEE
%mmf%ﬁmﬁ,%@4/A~&%ﬁ&?éb7//xawﬁﬁﬁkﬁbé“t.%ﬁm@
ANEFEEKR LR TRV,



Problem 3

Consider bit-serial communication circuits which send and receive 5-bit information bit-by-bit
in a noisy environment. The 5-bit information consists of a 2-bit start-bit signal, 2-bit payload
data, and a 1-bit odd-parity signal.

The sender circuit always outputs ‘0’ in the initial state. At the beginning of a communication,
the sender outputs 2-bit data ‘11’ bit-by-bit. It subsequently outputs 2-bit payload data bit-by-bit
from the most significant bit. It finally outputs an odd-parity sigual such that the nwmber of *1’s
in the sent bit sequence including the 2-bit start-bit signal, the payload data, and the parity signal
itself is an odd number. After sending the parity signal, the sender circuit goes to the initial state,
and it outputs ‘0’ until the next sending.

The receiver circuit has a 1-bit input A from the sender circuit, a 1-bit output B for the parity
check result, and a 2-bit output for the received payload data. It obtains payload data from a
received bit sequence and does the odd parity checking.

In the initial state, the receiver circuit waits for ‘1’ corresponding to the first bit of a start-bit
signal. In the next clock cycle after receiving the first bit of a start-bit signal, it receives a value
corresponding to the second bit of a start-bit signal. If the received value corresponding to the
secoud bit of a start-bit signal is ‘0°, the receiver circuit judges that the first received bit ‘1" was
an error caused by a noise, and goes back to the initial state. Otherwise, in the next 2 clock
cycles, it stores each value of the input A as payload data. At the next clock cycle, it receives a
parity-bit, and it verifies that the number of ‘I’s in the received 5-bit sequence consisting of the
2-bit start-bit signal, the 2-bit payload data, and the parity-bit is odd. It assigns ‘1’ to the output
B if the number of ‘1’s is odd, and it assigns ‘0’ otherwise. The value of the output B is always ‘0,
except in the clock cycles for receiving a parity-bit. The receiver circuit then goes to the initial
state, regardless of the parity-check result.

Answer the following questions.

(1) Give the state trausition diagram of a Mealy-type finite state machine (FSM), consisting of 7
states, for the parity check circuit with the input A and the output B in the receiver circuit.
Based on the state transition diagram, give also a corresponding state transition table and
an output table by using the one-hot encoding. One-hot encoding is a method for encoding
each state as a bit sequence where only one bit is ‘1’ and the other bits are ‘0’.

(2) Based on the state transition table and the output table in question (1), express the output
B as a Boolean expression in terms of the input A and the one-hot encoding representation
of the current state of the FSM. Based on the Boolean expression, give also a corresponding
gate-level circuit of the parity check circuit that outputs B, given A and the one-hot encoding
representation of the current state of the FSM as inputs. You are allowed to use only 2-input
AND gates, 2-input OR-gates, and NOT-gates. There is no limitation on the number of
gates. You need not describe unused input signals.

(3) According to the Boolean expression answered in question (2), give a CMOS transistor level
circuit that outputs B, given A and the one-hot encoding representation of the current state
of the FSM as inputs. You are not allowed to use more than 12 transistors. You may use
the inverter mark, but the number of transistors required for the inverters must be included
in the total number of transistors. You need not describe unused input signals.
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Problem 4

Let R be the set of real numbers. Denote by T the transposition operator of a vector and a
matrix. When w = (wq,ws,...,wq)" € R is a d-dimensional column vector, the norm |jw]|2

is defined by ||wls = \/ w? + w3 + ...+ w3 Define the inner product of two column vectors

z1,@2 € R? as @ x5 € R. For a d x d matrix A € R™9, define ||w|l4 = VwT Aw. Let tr(B) be
the trace of the matrix B.

Consider the problem of predicting a real-valued label y € R from a d-dimensional real vector
x € R%. For learning a predictor, suppose that n training samples

{(@i,u:) |z €RY, g, €R, i=1,2,...,n}

are given where (x;,y;) means that y; is the real-valued label of @;. In addition, by using a d-
dimensional vector w* € R? and observational noise ¢; (i = 1,2,... ,n) that is independent and
identically distributed, assume the data generation process as

Yi =w$T$i+Ei ('L = 1,2,...,72.),

where the expectation Efe;] = 0 and variance V[e;] = 02 > 0 (i = 1,...,n). Let us introduce the
symbols

X =z, xn] €R™Y Y =[y,..., 0] €R®, €=le1..... €]’ €R™.

We also use the symbol & = 2XTX € R¥4 where & is assumed to be a regular matrix. The
expectation over the observational noises is expressed by Ec[-].
We formulate the learning of a predictor f(x) = w "« as the following optimization problem.

W = argmin L{w)
weRd

1« T oo 1
Lw) = ;(yz —w @)=Y - Xwl|j.
Answer the following questions. Describe not only an answer but also the derivation process.

(1) Express w using X, Y, ®, and n.

(2) Suppose we wish to express E¢[L(w)] in the form of |lw — w*||% + b. Express the matrix
A € R¥4 and the positive real number b > 0 using ® and o2.

(3) Suppose we wish to express E¢[L(w)] —E¢[L(w*)] in the form of ‘3’% tr(B). Express the matrix
B € R¥*4 yging the matrix X.

(4) Explain what problem arises when @ is not a regular matrix and suggest a way to remedy
the problem.



