Written Exam
10:00 — 12:30, February 6, 2018

Entrance Examination (AY 2018)

Department of Computer Science

Graduate School of Information Science and Technology
The University of Tokyo

Notice:
(1) Do not open this problem booklet until the start of the examination is announced.
(2) Answer the following 4 problems. Use the designated answer sheet for each problem.

(3) Do not take the problem booklet or any answer sheet out of the examination room.

Write your examinee’s number in the box below.

Examinee’s number | No.

Problem 1

In this problem, R represents the set of real numbers. and RN represents the set of real column
vectors of length N. For v € RV, v denotes its transpose. Let I be the N x N identity matrix.
Consider an eigensystem of a real N x N symumetric matrix A,

Ax = Az,

where A and x are an eigenvalue and a corresponding eigenvector, respectively.
Let Apax (M) be the maximum of eigenvalues of matrix M.
You may use the following facts on the eigenvalues and the eigenvectors of a real N x N symmetric

matrix without proofs;
e There are N independent eigenvectors that form an orthogonal basis.
e Every eigenvalue is a real number.
Answer the following questions.
(1) Prove that if @ is an eigenvector of A, it is also an eigenvector of A + pl for any u € R.

(2) Prove that
Amax(A) = max{v' Av |ve R, v'v =1}

(3) Prove that
UT (Amax(A)] - A) v >0

for any v € RV,
(4) Suppose that matrix B is also an N x N real symmetric matrix. Prove that

Amax(A + B) < Amax(A) + Anax(B).

Problem 2

For each n > 1, let ¥, be {a1,...,a,}, where ay, a, are different from each other. For a

word w € X, we write |wl,, for the number of occurrences of a; in w. We define the languages

Ly, and L3z, over ¥, by:
Lyn ={w € X}, | |w|q, is even for every i € {1,...,n}},

and

Lz, = {w € X, | lwl|,, is even for some i € {1,...,n}}.

Answer the following questions.
(1) Give a determanistic finite state automaton with 4 states that accepts Ly 5.

(2) Give a non-deterministic finite state automaton with 7 states (without e-transitions) that

accepts L3 3.

(3) Prove that, for every n > 1, every deterministic finite state automaton that accepts L3, has
at least 2™ states.

(4) Prove that, for every n > 1, every non-deterministic finite state automaton (without e-
transitions) that accepts Ly, has at least 27 states.

Ut

Problem 3

Suppose that we have a set of 2V elements and its partition into subsets where every element
belongs to one and only one of the subsets. We want to support the following two operations for

a partition.

FIND(x) identifies the subset that element x belongs to.
MERGE(A,B) merges two subsets, A and B.

We use a forest-of-trees structure, where each subset forms a tree. Each tree node corresponds
to an element and has a pointer to its parent. The pointer of a root node points to the identity of
the subset it belongs to. FIND(x) operation traces pointers from node x to the root. MERGE(A,B)
operation changes the pointer of the root node of subset A so that it points to the root of subset B.

We initially have 2V subsets, where each subset contains a single element. We then repeatedly
merge a pair of subsets until we get a single subset containing all the elements. Height of a tree is
defined as the number of edges on the longest path between its root and a leaf.

Answer the following questions.
(1) How many merge operations are required to merge all the subsets?

(2) What is the minimum (best case) tree height after the completion of all the merge operations

among all the possible merge sequences? Also explain why.

(3) What is the maximum (worst case) tree height after the completion of all the merge operations

among all the possible merge sequences? Also explain why.

(4) Onme can reduce the maximum (worst case) tree height by slightly modifying the MERGE(A,
B) operation. Explain how to modify the operation. Also. give the maximum tree height

when using the modified operation, with a brief explanation.

(5) One can reduce the height of a tree without increasing computational complexity. by per-
forming an additional procedure when applying the FIND(x) operation to an element x in

the tree. Explain how.

6

Problem 4

In this problem, we consider mutual exclusion of concurrent processes running on a multipro-
cessor system. Assume that the execution of the code x = x + 1 consists of the following three
operations: (i) load the initial value of x to a register R from a memory address A, (i) add 1 to
R, and (iii) store the value of R to A.

Answer the following questions.

(1) Consider the case where two processes share a variable x and execute x = x + 1 concurrently
on this multiprocessor system without mutual exclusion. Assuming that the initial value of
x is 0, answer all the possible values of x after both the processes complete the executions of

x = x + 1.

(2) A standard way to achieve mutual exclusion of the executions of x = x + 1 is to use the

TestAndSet instruction as in the following C code.

while (TestAndSet(&lock));
x=x +1;
lock = 0;

Here, x and lock are shared variables. whose initial values are 0. The TestAndSet instruction,
with a hardware support, atomically executes the functionality that is described by the

following C code. Answer appropriate expressions that fill the blanks from (A) to (E).

int TestAndSet(int *a) {

int b;
(A)| =B}
(C)] = (D)}

return |(E)|;

(3) An alternative way to achieve mutual exclusion is to use another atomic instruction Swap,

whose functionality is described by the following C code.

void Swap(int *a, int *b) {
int tmp = *a;
*a = *b;

*b = tmp;

}

Using the Swap instruction. mutual exclusion of the executions of x = x + 1 can be achieved

as follows.

int key = |(F)|;

while (((G)| == 1)
Swap(| (H)|, | (D) I);

X =x + 1;

lock = 0;

Here, x and lock are shared variables whose initial values are 0. and key is a local variable.
Answer appropriate expressions that fill the blanks from (F) to (I).

