2019 Admission Guide
University of Tokyo Graduate School of
Information Science and Technology
Department of Creative Informatics

Contact [Department Administration Office]

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656
University of Tokyo Graduate School of Engineering / Information Science
Office of Academic Affairs Division
Department Team (Department of Creative Informatics)
TEL: 03-5841-6889

Internet Guide to Entrance Examinations:
http://www.i.u-tokyo.ac.jp/index_e.shtml Under “QUICK LINKS” on the homepage
[http://www.i.u-tokyo.ac.jp/index_e.shtml], click on “How to apply”

Note 1: In addition to this pamphlet, be sure to check items for examinees in the Guidelines for Applicants for the Graduate School of Information Science and Technology (three versions exist: Master’s program, Doctoral program, and Doctoral program [Special selection for working students], as well as the Graduate School of Information Science and Technology Guidelines for Submission of TOEFL Test Scores. When submitting entrance application documents, use the original forms distributed along with other paper documents; do not use a printed version of the Web page.

Note 2: The Department of Creative Informatics conducts Summer entrance examinations and Winter entrance examinations for both the Master’s and Doctoral programs. Schedules, examination subjects, and examination methods differ for Summer and Winter entrance examinations.
1. Message for applicants

The Department of Creative Informatics is the newest Department within the comparatively new Graduate School of Information Science and Technology. It was founded in 2005. The Department of Creative Informatics currently incorporates aspects of five fields: Computer Science, Mathematical Informatics, Information Physics and Computing, Information and Communication Engineering, and Mechano-Informatics. The educational philosophy is “To refine practical creativity for realizing outstanding ideas, through creative practices over interdisciplinary fields. To achieve this goal, the Department will combine projects and advanced personnel training, and will promote collaborations among industry, government, and academia aimed at human resource cultivation. We hope that students completing this Department's program will play a leading role in the field of information technology.
2. Master’s program

2.1 Examination schedules and examination subjects

i) Summer entrance examination

(1) Regular education subjects

Applicants must select either Mathematics or Programming at the time of application.

<table>
<thead>
<tr>
<th>Dates, times, and locations (Locations will be posted at the main entrance to the School of Engineering Bldg. No. 6 on the day of the examination)</th>
<th>Examination subjects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, August 20, 2018 10:00 – 12:30 School of Engineering; Bldg. No. 6 (Refer to posting for details)</td>
<td>Mathematics</td>
<td>Students will be required to answer problems that will test basic mathematical abilities required for basic studies of information science and technology. Detailed description is on the admission guide of the graduate school of information science and technology.</td>
</tr>
<tr>
<td>Monday, August 20, 2018 10:00 – 12:30 13:30 – (Finishing time for afternoon session will depend on the number of examinees) School of Engineering; Bldg. No. 6 (Refer to posting for details)</td>
<td>Programming</td>
<td>In the morning session, students will be required to bring their own laptop PC and write a program based on a specified theme. Students may use whichever programming language they feel most comfortable with. In the afternoon, students will be required to respond to simple oral questions regarding their own programs. The oral examination in the afternoon will also test the students’ ability to analyze problems, create designs, produce documents, and give presentations.</td>
</tr>
</tbody>
</table>

Notes:

An operating environment required to write programs will be installed in the laptop PCs used for programming examination. Students may bring in one printed book about programming, and may refer to this book during the examination. Students may also use source programs, libraries, and other resources stored in the PC. Connecting the PC to any network will be prohibited during the examination. Confirm that the PC can read from and write to a USB flash drive (type A).

(2) Foreign languages

TOEFL scores will be used to determine the student’s English skills. No written English examination will be administered. Refer to the Guidelines for Submission of TOEFL Test Scores, which are provided separately from this guide. Note that in past years, it took a considerable amount of time to submit TOEFL score certificates. If a student is unable to take the TOEFL test for unavoidable reasons, the designated TOEFL-ITP test (August 3, Friday, 2018) may be taken as a substitute. For details, refer
(3) Specialized subjects

Students shall select one of the following five specialized subjects at the time of application. Students being tested in specialized subjects for other departments should refer to their Entrance Examination Guides for details on locations and subject matters of those examinations.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Dates, times, and locations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Informatics</td>
<td>Tuesday, August 21, 2018 10:00 – 12:30 School of Engineering Bldg., No. 6</td>
<td>Problems will be selected from fields related to software/algorithms, computer hardware, and information systems, among other fields. Students will be required to answer three questions.</td>
</tr>
<tr>
<td>Computer science</td>
<td>Refer to the “Department Entrance Examination Guide” for the Department of Computer Science</td>
<td></td>
</tr>
<tr>
<td>Mathematical Informatics</td>
<td>Refer to the “Department Entrance Examination Guide” for the Department of Mathematical Informatics</td>
<td></td>
</tr>
<tr>
<td>Information Physics and Computing</td>
<td>Refer to the “Department Entrance Examination Guide” for the Department of Information Physics and Computing</td>
<td></td>
</tr>
<tr>
<td>Information and Communication Engineering</td>
<td>Refer to the “Department Entrance Examination Guide” for the Department of Information and Communication Engineering</td>
<td></td>
</tr>
</tbody>
</table>

(4) Oral examination

The oral examination is scheduled to be held in the School of Engineering Bldg. No.6 on Wednesday, August 22 2018, starting at 1:30 p.m. (finishing time will depend on the number of examinees). Students will be provided with a rough schedule for the oral examination in advance, but the detailed schedule will be posted on the day of the examination, in front of the room where the oral examination are held, depending on the actual examination progress. In the oral examination, students will be required to answer questions on topics including the content of the written examination, current research themes, and research themes they desire to undertake in graduate school.
ii) Winter entrance examination
(1) Regular education subjects
Unlike the Summer entrance examination, the Winter entrance examination will cover programming only.

<table>
<thead>
<tr>
<th>Dates, times, and locations</th>
<th>Examination subjects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, February 7, 2019</td>
<td>Programming</td>
<td>Refer to explanation of Summer entrance examination</td>
</tr>
<tr>
<td>9:30 – 12:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00 – Finishing time for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the afternoon session will</td>
<td></td>
<td></td>
</tr>
<tr>
<td>depend on the number of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>examinees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Engineering, Bldg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.6 (Refer to posting for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>details)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Refer to explanation of Summer entrance examination

(2) Foreign languages
TOEFL scores will be used to determine the student’s English skills. No written English examination will be administered. Refer to the Guidelines for Submission of TOEFL Test Scores, which are provided separately from this guide. Note that in past years, it took a considerable amount of time to submit TOEFL score certificates. Please note that only TOEFL scores will be accepted for the foreign language segment of the Winter entrance examination. Students will not be allowed to take the TOEFL-ITP test in lieu of submitting TOEFL scores, so applicants are strongly urged to take the TOEFL test at the earliest possible date.

(3) Specialized subjects
Unlike the Summer entrance examination, students cannot take examination for specialized subjects of other departments.

<table>
<thead>
<tr>
<th>Dates, times, and locations</th>
<th>Specialized subjects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday, February 6, 2019</td>
<td>Creative Informatics</td>
<td>Problems will be selected from fields related to software/algorithms, computer hardware, and information systems, among other fields. Students will be required to answer three questions.</td>
</tr>
<tr>
<td>14:00 – 16:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Engineering, Bldg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.6,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(4) Oral examination
Oral examination is scheduled to be held in the School of Engineering Bldg.No.6 on Friday, February 8, 2019. (starting and finishing time will depend on the number of examines). Students will be provided with a rough schedule for the oral examination in advance, but the detailed schedule will be posted on the day of the examination, in front of the room where the oral examination are held, depending on the actual examination conditions. In the oral examination, students will be required to answer questions on topics including the content of the written examination, past research themes, and desired research topics to be undertaken in graduate school.

2.2 Submission of Preference survey form
Applicants must submit the Preference survey form (Summer and Winter entrance examinations for the Master's program) along with other application materials.
3. Doctoral program / Doctoral program [Special selection of working students]

3.1 Examination schedules

i) Summer entrance examination

(1) First round examination

<table>
<thead>
<tr>
<th>Dates, times, and locations</th>
<th>Examination subjects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, August 21, 2018</td>
<td>Specialized subjects</td>
<td>Problems will be selected from fields related to software/algorithms, computer hardware, and information systems, among other fields. Students will be required to answer three questions.</td>
</tr>
<tr>
<td>10:00 – 12:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Engineering; Bldg. No.6,</td>
<td>Oral examination</td>
<td>Students will be required to give a presentation on their Master’s thesis or equivalent paper (about 15-20 min.; projector can be used), then will be required to answer oral questions on the presentation. Students should also be prepared to answer oral questions about their research plan for the Doctoral program.</td>
</tr>
<tr>
<td>From 1:30 p.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Finishing time will depend on the number of examinees)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Engineering; Bldg. No.6,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Students will be provided with a rough schedule for the oral examination in advance, but the detailed schedule will be posted on the day of the examination, depending on the actual examination progress.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(a) TOEFL scores will be used to determine the student’s English skills. No written English examination will be administered. Refer to the Guidelines for Submission of TOEFL Test Scores, which are provided separately from this guide. Note that in past years, it took a considerable amount of time to submit TOEFL score certificates. If a student is unable to take the TOEFL test for unavoidable reasons, the designated TOEFL-ITP test (Friday, August 3, 2018) may be taken as a substitute. For details, refer to the Guidelines for Submission of TOEFL Test Scores.

(b) Persons who have completed or are expected to complete a University of Tokyo Graduate School of Information Science and Technology Master's program will neither be required to submit TOEFL scores nor to take the examination for specialized subjects.

(2) Second round examination

In principle, second round examination will be held from Thursday, January 24 to Friday, January 25, 2019, only for applicants for the Summer entrance examination who are currently registered with the Department of Creative Informatics and who are taking examination for the Master’s program.
Examination schedules for other examinees will be in accordance with the Winter entrance examination. Applicants will be notified later regarding details of schedules and locations. In the case of persons wishing to enter the school in September and persons holding a Master's degree at the time of application, the second round examination will be conducted based on the schedule for the oral examination.

ii) Winter entrance examination
First and second round examinations will be conducted during the period from Wednesday, February 6 to Friday, February 8, 2019. Acceptance may be limited to a few students. Examination methods will be the same as those used for Summer entrance examination. Details of schedules and locations will be in accordance with the first and third days of the Master’s program Winter entrance examination schedule. Note that only TOEFL scores will be accepted for the foreign-language segment of the Winter entrance examination. Students will not be allowed to take the TOEFL-ITP test in lieu of TOEFL scores, so applicants are strongly urged to take the TOEFL test at the earliest possible date.

3.2 Preference surveys for applicants to the Doctoral program
Persons applying to the Doctoral program should keep in close contact with their preferred faculty advisor before the application period. Applicants must submit the Preference survey form (for the Doctoral program) along with other application materials. Students who have tentatively fulfilled the requirements for the Doctoral program, that is, who have passed the examination informally, will immediately be assigned a tentative faculty advisor.

3.3 Submission documents for the Doctoral program [Special selection for working students]
The format for the “overview of achievements, etc.,” is indicated in Chapter 5 in the Documents for submission in the Doctoral program [Special selection for working students] Guidelines for Applicants. Provide a simple explanation of each major achievement during employment, using no more than two A4 size pages.
2019

University of Tokyo Graduate School of Information Science and Technology
Department of Creative Informatics

Information for persons taking the entrance examination
(Master’s and Doctoral programs)

1. Examination dates and times
Refer to the “Examination schedules” listed in this guide.

2. Examination locations
University of Tokyo, Hongo Campus (7-3-1 Hongo, Bunkyo-ku, Tokyo)
Refer to the Internet Hongo Campus map at http://www.u-tokyo.ac.jp/campusmap/map01_01_e.html
Subway: Marunouchi Line and Oedo Line: Get off at Hongo Sanchome Station
Chiyoda Line: Get off at Nezu Station
Namboku Line: Get off at Todai Mae Station
Mita Line: Get off at Kasuga Station
Bus: Take Toei Bus No. 43 or 51 to “Todai Seimon Mae” (University of Tokyo main gates), or Toei School Bus No. 1 or 7 to “Todai Konai” (University grounds).

Examinees should be in the designated examination room no later than 5 minutes before the start of the examination. If you are late, consult the proctor.

3. What to bring
(1) Examination admission card
(2) Black lead pencil (or black lead mechanical pencil), eraser, pencil sharpener, clock or watch (for consulting time only; devices with other functions are not acceptable).
Note: During the written examination, students are not allowed to use calculators, mobile phones or PHS phones, or other digital devices (including clocks) with calculation functions.
(3) Persons taking the programming examination for the Master’s program should bring a laptop PC and no more than one book about programming.

4. Items to keep in mind during examination
(1) Once the exam started, you should not exit the room, even if you finished answering all the questions or decided to give up taking the exam.
(2) As a general rule, you should not exit the room during the exam, even temporarily. Request for a permission when you feel sick or need to use a bathroom.
(3) Examination admission cards must be kept on the desktop throughout the examination period.
(4) During the examination period, and all mobile phones must be turned off. Mobile phones must not be carried on the examinee's person (on neck straps, in pockets, etc.).
(5) Examinees will not be allowed to ask questions about the contents of the examination problems.
(6) Examinees must write their examination admission number and name on all answer sheets, and enter their answers on the designated forms. If there is not enough space, they may write on the back of the answer sheets.
(7) Examinees must not take answer sheets or question booklets out of the examination room.
This document is a translation from the official Japanese version.

[Preference Card (Summer entrance examination for Master’s program)]

University of Tokyo Graduate School of Information Science and Technology, Department of Creative Informatics

<table>
<thead>
<tr>
<th>Program</th>
<th>Master’s program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinee’s name</td>
<td>*Examination admission number</td>
</tr>
<tr>
<td>Graduating university</td>
<td>University: ___________________ School: ___________________</td>
</tr>
<tr>
<td></td>
<td>Department: ___________________</td>
</tr>
<tr>
<td>Examinee contact address and phone number during the examination period</td>
<td>Address: ___________________</td>
</tr>
<tr>
<td></td>
<td>TEL: ___________________</td>
</tr>
<tr>
<td></td>
<td>TEL (mobile phone): ___________________</td>
</tr>
<tr>
<td></td>
<td>E-mail: ___________________</td>
</tr>
<tr>
<td>Names of preferred advisors</td>
<td>Preference 1</td>
</tr>
<tr>
<td></td>
<td>Preference 2</td>
</tr>
<tr>
<td></td>
<td>Preference 3</td>
</tr>
<tr>
<td></td>
<td>Preference 4</td>
</tr>
<tr>
<td>Intention (Check)</td>
<td>I accept enrollment if another advisor offers to serve as my supervisor</td>
</tr>
<tr>
<td></td>
<td>I do not accept enrollment if another advisor offers to serve as my supervisor</td>
</tr>
<tr>
<td>Regular education subjects to be tested</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Specialized subjects to be tested on the examination (Check)</td>
<td>Programming</td>
</tr>
<tr>
<td></td>
<td>Do you wish to enter the school in September 2018?</td>
</tr>
<tr>
<td>Preferred field and research ambitions</td>
<td>Creative Informatics</td>
</tr>
<tr>
<td></td>
<td>Computer science</td>
</tr>
<tr>
<td></td>
<td>Mathematical Informatics</td>
</tr>
<tr>
<td></td>
<td>Information Physics and Computing</td>
</tr>
<tr>
<td></td>
<td>Information and Communication Engineering</td>
</tr>
</tbody>
</table>

Submit this form along with your application.
* Leave this box blank
If you wish to enter the school in September 2018, confirm whether the requirements are satisfied with the administration office and circle “Yes” in the appropriate column above.
Circle one regular education subject and one specialized subject to be tested.
[Preference Card (Winter entrance examination for Master’s program)]

University of Tokyo Graduate School of Information Science and Technology, Department of Creative Informatics

<table>
<thead>
<tr>
<th>Program</th>
<th>Master’s program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinee’s name</td>
<td>*Examination admission number</td>
</tr>
<tr>
<td>Graduating university</td>
<td>University: __________</td>
</tr>
<tr>
<td></td>
<td>School: __________</td>
</tr>
<tr>
<td></td>
<td>Department: __________</td>
</tr>
<tr>
<td>Examinee contact address and phone number during the examination period</td>
<td>Address:</td>
</tr>
<tr>
<td></td>
<td>TEL:</td>
</tr>
<tr>
<td></td>
<td>TEL (mobile phone):</td>
</tr>
<tr>
<td></td>
<td>E-mail:</td>
</tr>
<tr>
<td>Names of preferred advisors</td>
<td>Preference 1</td>
</tr>
<tr>
<td></td>
<td>Preference 2</td>
</tr>
<tr>
<td></td>
<td>Preference 3</td>
</tr>
<tr>
<td></td>
<td>Preference 4</td>
</tr>
<tr>
<td>Intention (Check)</td>
<td>I accept enrollment if another advisor offers to serve as my supervisor</td>
</tr>
<tr>
<td></td>
<td>I do not accept enrollment if another advisor offers to serve as my supervisor</td>
</tr>
<tr>
<td>Preferred field and research ambitions</td>
<td></td>
</tr>
</tbody>
</table>

- Submit this form along with your application
- * Leave this box blank.
This document is a translation from the official Japanese version.

[Preference Card (Summer/Winter entrance examination for Doctoral program)]
University of Tokyo Graduate School of Information Science and Technology, Department of Creative Informatics

<table>
<thead>
<tr>
<th>Program</th>
<th>Doctor’s program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinee’s name</td>
<td>*Examination admission number</td>
</tr>
<tr>
<td>Graduating university or graduate school</td>
<td>University:_________ School:_________</td>
</tr>
<tr>
<td></td>
<td>Department:_________</td>
</tr>
<tr>
<td></td>
<td>Graduate School:_________ School:_________</td>
</tr>
<tr>
<td></td>
<td>Department:_________</td>
</tr>
<tr>
<td>Examinee contact address and phone number during the Examination period</td>
<td>Address: ___________</td>
</tr>
<tr>
<td></td>
<td>TEL: ___________</td>
</tr>
<tr>
<td></td>
<td>TEL (mobile phone): ___________</td>
</tr>
<tr>
<td></td>
<td>E-mail: ___________</td>
</tr>
<tr>
<td>Names of preferred advisors</td>
<td></td>
</tr>
<tr>
<td>Application period (Circle the appropriate response)</td>
<td>Summer / Winter</td>
</tr>
<tr>
<td>Preferred time of entry (Circle the appropriate response)</td>
<td>September 2018 / April 2019</td>
</tr>
<tr>
<td>Preferred field and research ambitions</td>
<td></td>
</tr>
</tbody>
</table>

- Submit this form along with your application.
- * Leave this box blank.
- If you wish to enter the school in September 2018, confirm whether the requirements are satisfied with the administration office and circle “Yes” in the appropriate column.
- If you are taking examination for “Special selection of working students,” circle “Working student” in the “Special selection of working students” column.
University of Tokyo Graduate School of Information Science and Technology, Department of Creative Informatics
Faculty Advisors and Concurrent Faculty Advisors (as of April 2018)

Faculty Advisors

Professor Shigeru Chiba
Programming Languages, Software Infrastructure

Professor Takeo Igarashi
User Interface, Computer Graphics

Professor Akiko Takeda

Professor Masatoshi Ishikawa*
Perception Action Systems, Vision Chip

Professor Hiroshi Esaki
Smart Internet, Sensor Network

Professor Masayuki Inaba
Intelligent Robots, Humanoids

Associate Professor Mary Inaba
Networks, Supercomputers, Computational Geometry

Associate Professor Hideki Nakayama
Machine Perception, Computer Vision, Pattern Recognition

Associate Professor Toshiya Hachisuka
Computer Graphics, Computational Statistics

Concurrent Faculty Advisors who belong to other departments

Associate Professor Shinpei Kato (Dept. of Computer Science)
Operating Systems, Supercomputing, Autonomous Driving

Professor Kenji Yamanishi
Information-theoretic Learning Theory, Data Mining, Anomaly Detection

Professor Hiroshi Saruwatari (Dept. of Information Physics & Computing)
Speech and Acoustic Information Processing, Statistical Signal Processing, Machine Learning

Professor Shuichi Sakai (Dept. of Information & Communication Engineering)
Computer Systems and Applications

Professor Tatsuya Harada (Dept. of Mechano-Informatics)
Real World Intelligent Systems

Note:
(1) *Professor Masatoshi Ishikawa will not accept new students.
(2) Other advisors who accept students of the Department of Creative Informatics will be registered as concurrent faculty advisors after admission.
Programming is a very creative activity. Through programming, we can create a new service that changes our lifestyle in our cyber world but also our physical world. We can create a new tool that helps our daily life. However, although writing a toy program is easy, developing truly useful and reliable software with a non-trivial size is not a simple task. It is often just too complex to complete and thus we need to carefully write a program to have a clear structure and to be easily readable and maintainable.

Our research aim is to discover a scientific knowledge and invent an engineering technique for such programming. We have been studying and developing program libraries, frameworks, and programming tools for a new style of programming. An example is a library for meta-level programming that automates program translation and generation. It allows user programmers to write a simple program and it automatically rewrites it to have more complex functionalities. Another example is a programming tool for developing a library with a “fluent” programming interface, so-called an embedded domain specific language (DSL). Such a kind of DSL is getting important today.

We have been also developing a new programming language, usually an extended version of existing language that supports a new language construct. A language construct is a various component constituting a language, such as a while statement, an object and a class, a lambda expression, type inference, and so forth. As an academic research group, we are working for inventing a new language construct that will be adopted by widely used major programming languages in future.

A more fundamental layer of software stack is also our research topic. Our interests cover a compiler, an interpreter, and a language virtual machine. A system service provided by the operating-system layer is also a research topic, such as security, virtualization, distributed and/or parallel computing. We are also studying program analysis from a software engineering viewpoint and a tool for it. Applying machine learning to such analysis is also our recent research topic.

A wide range of research for helping programming practice is covered. Only a study on a particular application is excluded. A research topic for an individual student is selected through discussion with a supervisor.
(1) **User Interface:** We are working on user interfaces for information appliances ranging from personal computers, smartphone, robots, and self-driving automobiles. We not only develop techniques to improve efficiency but also propose new way of interaction or analyzing interactions. Below is some examples.

- User interfaces for machine learning and artificial intelligence. We especially focus on the preparation of training data and interactive learning.
- Interaction techniques for novel appliances such as smartphone, smart watches, AI speakers and smart glasses.
- Interaction techniques for giving directions and controlling real-world systems such as robots and self-driving automobiles.

(2) **Graphics:** We mainly work on interactive shape modeling. We work on content creation for digital media such as movies and games. We also work on interaction techniques for digital fabrication using 3D printers and laser cutters. We focus on techniques for non-expert users.

- Content creation such as 3D modeling and 2D animation using recent technologies such as sketching and machine learning. We also work on interaction techniques for medical imaging.
- Shape modeling for real world objects such as musical instruments, clothes, and toys leveraging real-time physical simulation.
- Novel techniques for 3D scanning and 3D printing to support personal fabrication.

Each student sets his or her own goal in our group, so we expect students to be self-directed and take responsibility. We can provide opportunity for students to collaborate with research groups in other countries and productions.

http://www-ui.is.s.u-tokyo.ac.jp/
Operation research (OR) is one of the scientific techniques for constructing a mathematical model and finding its solution by using a computer for real world problems. In particular, we are conducting research focusing on model construction as a mathematical optimization problem and development of algorithms (numerical methods) for solving the problem.

The mathematical optimization problem is a mathematical model to achieve a better objective value under given constraints. Mathematical optimization problems arising from real world problems are usually large in scale and can not be solved without designing efficient algorithms based on the mathematical structure of the problem. We focus on optimization algorithms and software development based on mathematical optimization theory, and are conducting research to apply to problems in fields such as energy systems, financial engineering, machine learning and so on.

Research Topics

- **Efficient algorithms for non-convex optimization**
 Problems in the real world often result in large scale, nonlinear and nonconvex continuous optimization problems. Algorithms for quickly finding highly accurate solutions are required. We are developing an efficient algorithm that exploits the features of the problem well.

- **Decision-making method under uncertainty**
 When constructing a mathematical optimization model using uncertain data, robustness against uncertainty of data is required. Robust optimization models and stochastic programming models are useful in such situations. We aim to efficiently solve such optimization problems and contribute to real world problem solving.

- **Applying optimization methods to other fields**
 The application range of the mathematical optimization method is diverse, and it is also used in fields such as energy system, financial engineering, machine learning and so on. We propose efficient algorithms for problems to be solved in such fields.

Knowledge and ability necessary for conducting research

Linear algebra is indispensable for conducting research in our field. More abstract mathematics is rarely necessary and we often use elementary mathematics to develop optimization algorithms. In addition, basic knowledge of programming is required when implementing optimization algorithms in the process of research.

What to expect from students

In order to create something new as a research, a very steady effort is necessary. The range of activities will not be confined to the laboratory. I expect that students will participate in research meetings, domestic and overseas conferences, etc. We will gladly cooperate.
The Next Generation Perception and Behavior Systems

We aim to realize perception systems at an advanced level, making use of semiconductor integration technologies and parallel information processing technologies. We aim to realize, through engineering, sensory functionality that corresponds to the five human senses, hierarchical parallel processing functionality corresponding to information processing by the brain, and dynamic manipulation corresponding to locomotion. By combining these we aim to achieve intelligent systems = perception and behavior systems that exceed human performance. The following four are currently the main fields of study.

Ultra-High Speed Robots: Sensor Fusion

The objective of sensor fusion is to realize high-speed intelligent robot systems with flexible perception and behaviour capacity, through integration and fusion based on hierarchical parallel processing of sensory information and motion information from multiple sensors. Using high-speed vision, we aim to create robots that move at imperceptible speeds, (1) Sensory Motion Integration, (2) High Speed Robot Arm, (3) High Speed Multi-Fingered Hand, (4) Dynamic Manipulation, (5) System Architecture.

Ultra-High Speed Image Processing: Vision Architecture

By accumulating general-purpose processing circuits that are directly connected to CMOS image sensors, high-speed real-time vision can be achieved that far surpasses any video frame rates achievable in the past. (1) Vision Architecture Design, and Development (2) Reconfigurable Parallel Processing Architecture, (3) Massively Parallel Image Processing, (4) Application of Ultra-High Speed Image Processing (e.g. Human Interface, ITS, Security, Media).

High Speed Control of Images: Dynamic Image Control

We intend to develop a system that uses image information to control the image itself, as well its applications. (1) High Speed Image Control Technology, (2) Visual Feedback, (3) High Speed Variable Focus Lens, (4) Micro Visual Feedback, (5) High Speed Micro Manipulation, (6) Application in Media, Bio etc.)

Innovative Interface: Active Perception

We aim to present information that exceeds human sensory capacity in a radically different form, and actively use it for humans as well as machines. (1) Development of New Methods for Information Presentation, (2) Use of Human Sensory Functions, Specifically Proprioception, (3) High Speed Human Interface, (4) Sports Training System, (5) Active Sensing and its Application.

In Search of the Ultimate Systems with Original Elemental Technologies

In our pursuit of the ultimate system performance and achievement of elemental technology breakthroughs, we also pursue original system architecture. We design and build new intelligent systems based on the unrivalled high performance of elemental technologies, and thus explore the limits of the systems. In line with the engineering of the future, which is moving from analysis to synthesis, our focus is research that places importance on originality.
Overview of Esaki Laboratory

Our laboratory researches widely distributed computer systems, the most well known being the Internet. We cover physical system development/deployment to user applications. Of our many research topics, we focus on a future Internet architecture and the (physical) Internet system. Our motto is “research in our right hand, operation in our left hand”. We show this motto in our working and professional operate-able system development.

Esaki Lab is one of primary laboratories in the WIDE Project (www.wide.ad.jp), which is a research and development consortium working on large scale Internet system and technologies. Established in 1988, WIDE has been a leading project exploring the Internet in Japan as well as across the world. The WIDE project counts more than 100 private companies and more than 400 active researchers in academia and industry as members. Laboratory members participate in practical, professional and global WIDE project activities: while operating our hand-made nation-wide R&D testbed, which is a part of a greater global R&D testbed.

Key words of recent Esaki Lab’s research topics are “Global”, “Mobile” and “Ubiquitous”. Our concrete research areas are Sensor and Facility Networking, Routing Architecture, Network Protocol Stack Architecture, Traffic Analysis and Virtualization, Software Defined Media.

Esaki Lab provides working opportunities at collaborating oversea research organizations, such as CNRS/INRIA (France), Cornell University/USC-ISI (USA), UCL(UK), HUT(Finland). These overseas research opportunities may be long term on-site research projects. Esaki Lab also hosts several oversea students each year from across the world.

Related Projects

Example Topics of Thesis
- Distributed Operating Systems: Virtualization, Cloud Computing, File System
- Future Internet Applications: SmartGrid, Ad Hoc and Nomadic Computing, Green ICT
- Traffic Measurement and Analysis

Destinations after graduation
The University of Tokyo, Keio University, CITI Group, IBM, MRI, NTT Communications, KDDI, NTT DoCoMo, NTT Data, Mitsubishi, Canon, Yokogawa, METI, MPT, NPA

Note: Esaki lab requires all its students to have a working knowledge of UNIX or a UNIX like OS as it will be the primary working platform.
Research in this laboratory is focusing on the fundamental functions and systems necessary for future intelligent robots that will live and work in the daily life field and human society. The members are challenging something new through their own integrated robot systems and learning how to build sustainable systems for the future with each other.

(1) **Daily life support humanoid platform**: recognition of situations in human life environments, using tools, dishes, tablewares, and appliances, learning from humans, conversation with humans, etc.

(2) **Musculoskeletal tendon-driven humanoid**: humanlike musculoskeletal body with very many joints and numerous redundant sensors aiming at powerful and supple motions like human, design principle of humanoid body structure, autonomous development of complex sensory-motor system, etc.

(3) **Embedded robotics devices**: soft flesh or deformable tactile sensor devices, integrated IMU sensors, perception devices, embedded CPU for flying robots, onbody communication LAN system, power system for intelligent robots, etc.

(4) **Dynamics whole body control humanoid**: integrating high-torque, high-speed motor drive circuit, high-speed 3D recognition system, dynamics whole-body.

(5) **IRT (Information and Robot Technology) to support human and aging society**: through fusing IT and RT systems, personal mobility robots, affectionate watching appliance are conducted for supporting the future life society

(6) **Robot Open Software System**: design and development of open-source type intelligent robot for mobile manipulation robot.

(7) **Creative Robotics**: Architecture design and development for hardware and software of new robots: wheel-legged body, combine-deformable transform robot, inflator robots etc.
Mary Inaba Group

High Speed Communication and Acceleration
http://akashi.ci.i.u-tokyo.ac.jp/lab-e/

Real-World Communication on a Long Fat Pipe Network

Data Reservoir Project (2000 --)
with Prof. Kei Hiraki
We monitor network packets using tools developed by our group, leading to new analyses, new concepts, and new methods for stable and fast data transfer. We evaluate our ideas with international experiments using over 30,000km real network, connecting Tokyo, U.S., and Europe.
URL: http://data-reservoir.adm.s.u-tokyo.ac.jp

Accelerator for High Performance Computing

Accelerators for Heavy Edge Computation are now in high demand
We propose and investigate hardware solution for this problem

Our Past Projects
Grape-DR Project (2004 -- 2010)
with Prof. Makino, Dr. Namura, Prof. Hiraki and Dr. Sugawara
We developed a low power consumption super computer system using our novel accelerator board with the “Grape-DR-Chip” designed by Prof. Makino.
2010(May) Little Green 500 1st place (815.43 MFLOPS/Watt)
2010(Nov) Green500 2+ place (1448.03 MFLOPS/Watt)

Planned Serendipity (2014 – 2019)
Development of an ultra-high speed cell sorter for bio-medical applications.
We focus on the information system of the sorter and on cell recognition.

Optimization Algorithms and Software Development

Search problems, geometric problems, community extraction, etc.
We focus on practical algorithm and coding
We encourage students to participate world competitions

Our PhD. Students success in international competitions.
SAT solver competition
2011 Tomohiro Sonobe, Gold Medal in the MiniSAT Track
2016 Seongsoo Moon, Best Crafted Benchmark Solver in the Main Track
ACM-IEEE MEMOCODE Design Contest
2015 Kenichi Koizumi, 1st Place (Continuous Skyline Computation)

motto: 学而不思則罔、思而不學則殆
Toward computer systems that can intelligently process gigantic multimedia data to realize cognitive understanding of the world

Human can instantly recognize various sensory information such as vision and audio, and describe it by language. However, the mechanism of such abilities is almost totally unknown. Although modern computers have made a remarkable progress in terms of computational powers, it has a still long way to go to rival real-world human intelligence in many aspects.

In Nakayama lab., we are aiming to establish such techniques, and conducting researches from both theory and application perspectives. This field is not mature enough and there are many unsolved problems, which makes it very attractive and challenging. We are eagerly waiting for ambitious and creative students to tackle the future of AI together!

Large-scale Multimedia Recognition
We are mainly focusing on the development of mathematical foundations to realize automatic recognition and understanding of various multimedia such as image, movie, speech etc. For example, high-level feature extraction for medias, and machine learning or pattern recognition methods are important topics.

Deep Learning
To enhance utility and availability of deep learning, we are making various improvements for fast computation, memory reduction and robust learning. In addition, we are also developing flexible neural models to integrate various modalities, not only images but also natural language and others.

Open-world Intelligent Systems
While modern AI systems based on machine learning have become able to achieve high recognition performance for given concepts, they are hopeless when they face unknown concepts in the real world. To autonomously and incrementally acquire new knowledge in the open world, we are developing many techniques in both software and hardware aspects.

Natural Language Processing
One of the keys to realize computers being able to understand natural language is how to implement world knowledge on them. To this end, we believe it is important to employ not only linguistic data but broader multi-modal information. Particularly, we are trying to establish a frontier spanning language and vision toward AIs with deep understanding of the world.
Our group is working on practical and theoretical aspects of computer graphics.

Computer graphics is important technology used in our daily life in the form such as video games, movies, and industry design. It is in fact an intellectually stimulating research field which requires you to combine wide and deep knowledge of various other fields such as physics, mathematics, computer science, perception, and arts. Even with such technical depth as a research field, it is worth noting that the results of research in computer graphics are easy to understand such as photorealistic images in movies. Visit the website if you are interested.

www.ci.i.u-tokyo.ac.jp/~hachisuka/

Some policies

- Work on a topic that is interesting for everyone, including yourself.
- Nobody micromanages you - you manage yours.
- The advisor should not “use” students to do research, but “help” them to work on theirs.
- Focus on publication.
- Polish presentation skills.
Concurrent Faculty Advisors who belong to other departments

<table>
<thead>
<tr>
<th>Name</th>
<th>Research Fields</th>
<th>Operating Systems, Supercomputing, Cyber-Physical Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shinpei Kato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Systems, Supercomputing, Cyber-Physical Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>We conduct research on computing platforms underlying creation of disruptive innovations. Examples of our research projects include the following: (1) On many-core architectures integrating million cores on a chip and their operating systems (2) On supercomputing and distributed data processing for peta-scale real-world and real-time information (3) On self-driving systems and artificial intelligence technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Research Fields</th>
<th>Information-theoretic Learning Theory, Data Mining, Anomaly Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenji Yamanishi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Yamanishi’s laboratory, major research topics are 1) information-theoretic machine learning theory, and 2) data mining applications. As for 1), we aim at developing novel machine learning technologies on the basis of information theory, and statistics. Our research targets include statistical model selection, latent variable modeling, anomaly detection, change detection, etc. As for 2), we aim at developing novel big data analysis methodologies for market analysis, traffic risk mining, web mining, healthcare, etc. on the basis of 1). We bring up data scientists who are strong both in theoretical and practical aspects.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Research Fields</th>
<th>Speech and Acoustic Information Processing, Statistical Signal Processing, Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiroshi Saruwatari</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Saruwatari Laboratory, we mainly address an innovation in new signal processing and information processing systems, focusing our attention on understanding, processing, and control of sound media (speech, music, etc.). For example, theories on new statistical modeling and machine-learning-based algorithms are of interest for us to solve the optimization problems under acoustical generative models and physical constraint. Through the innovation, we realize expansion of human hearing systems, new man-machine interface systems as well as new contribution to music art creation. (Keywords: blind source separation based on information-geometric theory, statistical sound enhancement, low-rank and sparse modeling, nonnegative matrix/tensor factorization, sound field reproduction for acoustical VR, deep-learning-based statistical speech synthesis, etc.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shuichi Sakai

Research Fields: Computer Systems and Applications

Professor Shuichi Sakai conducts wide-ranging and innovative research activities on the new information processing system. The current research theme is a computer architecture, secure information processing, dependable information processing, human computer interactions (HCIs) and so on for the future smart society. Especially, advanced architecture of microprocessors, the optimized compiler, many-core processors, secure computing, ultra-dependable processors and smart HCIs are specific subjects; his lab continues to produce world-class research results in these fields. In addition to presenting papers in international journals and major conferences, the researches continuously produces intellectual properties and the seeds of new products to the industry.

Tatsuya Harada

Research Fields: Real World Intelligent Systems

Our laboratory focuses on machine intelligence. Our goal is to invent hyper-intelligent systems by combining useful but infinite information in the physical space with a huge amount of data and powerful computational resources in the cyberspace. To tackle this challenging problem, we utilize all resources in the area of computer science including machine learning, computer vision, natural language processing and robotics.